Главная / Новости / Новости "Panasonic" / Токочувствительные (current sensing) чип резисторы компании Panasonic

Токочувствительные (current sensing) чип резисторы компании Panasonic

08.10.2020 | Panasonic

Введение

В современном мире электроники и автоматики люди не задумываются сколько процессов, связанных с их жизнью, происходят без участия человека. Будь то зарядка аккумуляторной батареи телефона или электрокара, переключение светофора или управление атомным реактором. Все эти процессы происходят без прямого участия человека, человек выполняет лишь функцию оператора, а управление осуществляется автоматически.

В настоящее время выпускается все больше и больше интеллектуальных устройств и очень часто, жизненно важно контролировать процессы, происходящие внутри электроники. Чтобы электроника работала без сбоев, не выходила из строя и служила максимально долго, крайне важно осуществлять контроль этих процессов.

Процесс контроля процессов, происходящих внутри электронных устройств, зачастую осуществляется методом контроль токов, протекающих в цепях. Существуют различные способы контроля токов, происходящих в электрических цепях электроники. Поэтому современные электронные устройства имеют в своем составе ряд сенсоров. Точность контроля зависит от точности выполняемых измерений, и точный контроль силы протекающего тока является одной из важнейших функций. Один из самых распространенных, простых, высокоточных и недорогих способов измерения токов, протекающих в электрических цепях с помощью резисторов.

Резистор и их типы

Резисторы являются самым используемыми компонентами в электронных схемах и занимают примерно 25% позиций в БоМе. В тоже время резистор считается самой простой деталью схемы, зачастую не требующей пристального внимания. Тем не менее незаметный, на фоне полупроводниковых микросхем и других компонентов, резистор выполняет очень важные функции и без резисторов не смогла бы работать практически ни одна электронная схема.

Резисторы — это пассивные элементы, выполняющие ряд второстепенных, но важных функций. Резистор, по определению – сопротивление (от латинского «resisto»), технологически же резистором можно считать любой материал, будь то кусок медного провода, вольфрамовая нить или полоска полупроводникового материала.

Казалось бы, что такого важного в резисторе, но сложно представить современные электронные схемы без тех функций, которые выполняют резисторы: преобразование силы тока в напряжение и наоборот, ограничение протекающего тока, создание делителей напряжения, подавление радиопомех и др.

Существует несколько различных типов резисторов, отличающихся своими параметрами, вариантами исполнения и функциональным назначением: SMD (чип) резисторы, выводные резисторы, проволочные резисторы, токочувствительные резисторы, термисторы, потенциометры и реостаты.

Особую роль играют резисторы в цепях прецизионных схем, где изменение параметров резистора ведет к негативным последствиям. Рассмотрим причины важности правильного выбора резисторов и варианты их применения на основе токочувствительных резисторов.

В качестве параметра, на основе которого можно проводить измерения, контроль и диагностику электронных схем является протекающий в них ток. Такой способ измерения является одним из самых распространенных, и недооценка важности корректного измерения силы тока приводит к дальнейшим проблема работы устройств и добавляет трудностей разработчикам и инженерам, обслуживающим электронику.

Измерение динамического тока всегда было важным параметром для управления производительностью системы и это стало еще более важным с распространением более интеллектуальных функций управления устройств и систем.

Основы измерения тока

Существуют различные способы измерения тока, но измерение тока, протекающего на участке цепи, путем измерения напряжения на резисторе, является самым простым, недорогим и достаточно точным способом. К тому же резисторы не восприимчивы к электромагнитным помехам и имеют компактные размеры.

Способ измерения тока с применением токочувствительного резистора основан на законе Ома (V=IxR), заключается он на измерении падения напряжения на встроенном последовательно с нагрузкой резистором с известным значением сопротивления, и последующим вычислением тока.

Несмотря на видимую простоту и эффективность, такой способ измерения тока имеет ряд конструктивных проблем и тонкостей, которые необходимо учитывать при конструировании устройства. Поскольку токочувствительный резистор включается в цепь последовательно нагрузке он не должен оказывать существенное влияние на ток в цепи, поэтому номинальные значения сопротивления таких резисторов составляют от единиц ом до долей миллимом. Однако, при выборе измерительного резистора с низким значением может сложится ситуация, что падение напряжения на резисторе может стать сопоставимым с входным напряжением смещения расположенной далее аналоговой цепи нормирования сигнала, что отрицательно скажется на точности измерения.

Если измеряемый ток содержит значимую высокочастотную составляющую, необходимо, что бы измерительный резистор обладал малой собственной индуктивностью, из-за возникшего реактивного напряжения на нем, которое может влиять на точность измерения.

Одним из ограничивающих факторов применения токоизмерительных резисторов является рассеиваемая на них мощность (Pрез. = I2xUрез.), и связанную с этим проблему теплоотведения, поэтому токочувствительные резисторы редко применяются в цепях с током более 100А.

Еще один важный вопрос, с которым приходится сталкиваться разработчикам электроники, это вопрос обеспечения электрической изоляции между силовой цепью и токоизмерительной схемой.

Существуют два основных способа измерения тока: со стороны нижнего плеча (low-side), когда измерительный резистор включается в цепь между нагрузкой и «землей» (Рис. 1) и со стороны верхнего плеча «high-side», когда резистор включается со стороны источника питания (между нагрузкой и источником питания). У каждого из этих методов измерения есть свои преимущества и недостатки.

Рисунок 1. Low-side принцип измерения тока (резистор между нагрузкой и «землей»).

Топологию измерения тока со стороны нижнего плеча (low-side), так же часто называют топологией с «общей» цепью, простая в исполнении и наиболее бюджетная, имеет низкое входное синфазное напряжение, но имеет свой недостаток, влияющий на точность измерений, она подвержена помехам от заземляющей цепи.

Так же такой способ измерения тока не дает возможности обнаружить протекание тока в «землю» через нагрузку при коротком замыкании.

Применение данной топологии измерения тока является целесообразным, когда требуется простота и дешевизна и не требуется контроль короткого замыкания, а помехи от заземляющей цепи допустимы.

Способ измерения тока со стороны верхнего плеча «high-side», когда резистор включается со стороны источника питания (между нагрузкой и источником питания) (Рис. 2), исключает попадание помех в токоизмерительную цепь, позволяет контролировать ток утечки в случае пробоя и возникновения короткого замыкания.

Рисунок 2. High-side принцип измерения тока (резистор между нагрузкой и источником).

Однако такая измерительная схема подвержена высоким динамическим изменениям синфазных входных напряжений, требует усложнения конструкции, повышает ее стоимость и требует компоненты с высоким рабочим напряжением.

Поскольку токочувствительный резистор не должен оказывать существенного влияния на протекающий в цепи ток, он имеет маленькое номинальное сопротивление, в результате чего падение напряжения на резисторе имеет малые величины и часто требует усиления перед преобразованием значений.

Таким образом конфигурация цепи для измерения тока основанная на токочувствительном резисторе включает в себя аналоговый усилитель (как правило операционный усилитель ОУ), АЦП для преобразования напряжения в цифровое представление и микроконтроллер.

Резистор, усилитель, АЦП и микроконтроллер могут быть как самостоятельными микросхемами, так и единым блоком системы на кристалле (SoC).

Важно при выборе токочувствительного резистора учитывать все его физические величины: номинальное сопротивление, точность, рассеиваемую мощность, тепловой коэффициент (TCR) и тепловую ЭДС, влияющие на точность измеряемых параметров. С учетом того, что на резисторе рассеивается мощность, вызывающая дополнительный нагрев микросхем, влияющий на конечную точность измерений, в системах с высоким током рекомендуется использовать внешние токочувствительные резисторы.

Выбор токоизмерительного резистора

При использовании токоизмерительного усилителя в разработке, весьма важен выбор параметров токочувствительного резистора. В первую очередь выбираются номинальное сопротивление и мощность этого резистора. Номинал резистора подбирают, исходя из желаемого максимального падения напряжения на нем при максимальном ожидаемом токе, или же исходя из планируемой потери мощности на этом резисторе.

После выбора величины и мощности токоизмерительного резистора определяется допустимое отклонение от номинального значения его сопротивления, так как это напрямую повлияет на точность воспринимаемого напряжения и измеряемый ток.

Тепловая ЭДС токочувствительного резистора является еще одной важной характеристикой. Токочувствительные резисторы должны работать в широком диапазоне токов. Когда ток низкий, тепловая ЭДС резистора добавляет измерительную ошибку к напряжению, создаваемому протекающим через резистор током. Это напряжение ошибки должно быть значительно меньше, чем наименьшее ожидаемое напряжение, создаваемое протекающим через токочувствительный резистор током, сводя к минимуму ошибку измерения.

Однако есть еще один параметр, на первый взгляд не вполне очевидный, о котором часто забывают – это температурный коэффициент резистора. Температурный коэффициент часто указывается в размерности миллионная доля на градус Цельсия (ppm/°C). Он важен, поскольку температура резистора будет расти за счет мощности, рассеиваемой при протекании большого тока через этот компонент. Часто в недорогих резисторах с классом точности менее 1% наблюдается изменение рабочих параметров под влиянием температуры.

Рекомендации по монтажу

Несмотря на их внешний вид, современные токочувствительные резисторы не так просты, как кажутся. В частности, сопротивление токочувствительного резистора фактически состоит из трех частей (рис. 3). Во-первых, есть сопротивление самого резистора. Затем, есть сопротивления выводов этого резистора и дорожек на печатной плате, подключаемых к резистору. Сопротивления выводов и дорожек незначительные, но и сами токочувствительные резисторы обычно имеют очень низкие значения сопротивления. При измерениях больших токов даже небольшие сопротивления выводов вносят в результаты измерения чувствительные погрешность, поскольку они не учтены производителем в спецификациях резистора.

Рисунок 3. Токовый резистор с двумя контактами фактически состоит из трех последовательно соединенных сопротивлений: сопротивление самого резистора (Rsens), сопротивление двух выводов резистора (Rlead) и сопротивление подводящих дорожек на плате, подключенных к резистору (не показано). Сопротивление выводов может вызвать ошибку измерений для большого тока.

Одним из способов, позволяющих избежать ошибок измерения, вносимых внешними сопротивлениями выводов, является создание соединения Кельвина, выполнив раздельные токоизмерительные дорожки к двухконтактному токочувствительному резистору (рис. 4).

При этом чрезвычайно большое значение для сохранения точности измерения имеет также правильная трассировка цепей между токоизмерительным резистором и усилителем тока на печатной плате. Чтобы достигнуть высокой точности измерения тока, необходимо использовать схему Кельвина, основанную на четырех точках подключения к токоизмерительному резистору. Первые два соединения нужны для контроля протекающего тока, а два других – для контроля падения напряжения на резисторе. На рисунке 4 показаны различные варианты подключений для контроля тока, протекающего через резистор.

Рисунок 4. Технология монтажа токоизмерительного резистора а), б), в), г

Одной из наиболее распространенных ошибок является подключение входов чувствительного по току усилителя к дорожкам печатной платы, показанное на рисунке 4а, вместо непосредственного подключения к резистору.

Другие допустимые варианты подключения к резистору для измерения тока представлены на рисунках 4б…г. Показанная на рисунке 4г компоновка использует независимое двухпроводное подключение для каждого вывода токоизмерительного резистора. Такой метод наиболее часто используется для резисторов с сопротивлением менее 0,5 мОм, когда паяное соединение способно серьезно изменить сопротивление цепи. Трудно сказать, какой метод компоновки точек подключения даст наилучшие результаты в окончательном варианте печатной платы, так как точность резистора во многом зависит от точки измерения, используемой при его производстве.

Если значение резистора было измерено с внутренней стороны контактных площадок, то наилучший результат измерения обеспечит компоновка, показанная на рисунке 4в. Если значение резистора было измерено на боковой стороне площадок – компоновка, показанная на рисунке 4б, даст наивысшую точность.

Резисторы Panasonic

Компания Panasonic – один из крупнейших мировых производителей электронных компонентов, предлагает более 35 серий токочувствительных резисторов с общим числом элементов более 13 000 наименований.

Все резисторы Panasonic выполнены по специальной технологии «мягкого контакта» (Soft Termination Technology) рис. 5, уменьшающей влияние разностного теплового расширения резистора и PCB, обеспечивающей высокую надежность резисторов и устройства в процессе эксплуатации.

Рисунок 5. Технология производства резисторов с использованием «мягкого контакта»

Разность теплового расширения материалов имеет коэффициент теплового расширения CTE (Coefficient of Thermal Expansion), в процессе пайки и эксплуатации резисторы подвергаются постоянному воздействию механических вибраций и температуры, в результате которых материалы резисторов и PCB сужаются и расширяются с разными значениями. На область припоя (галтели) рис.6 воздействует механическое напряжение, которое может привести к разрушению припоя и/или структуры резистора, увеличить контактное сопротивление, вызвать дополнительный нагрев, ухудшить параметры резистора и привести к выходу из строя как самого компонента, так и устройства в целом. Технология «мягкого контакта» в резисторах Panasonic нивелирует разницу TCE и обеспечивает целостность структуры в течение всего срока эксплуатации.

Рисунок 6. Результат разрушения галтели при разности CTE

Для большего уменьшения влияния сторонних факторов на резисторы, компания Panasonic предлагает резисторы с широкими контактными площадками серии ERJA1, ERJB1, ERJB2, ERJB3, ERJD1, ERJD2 или двойным резистивным слоем серии ERJ2LW, ERJ3LW, ERJ6LW, ERJ2BW, ERJ3BW, ERJ6BW, ERJ8BW, ERJ6CW, ERJ8CW обеспечивающие дополнительную надежность компонентов и схемы в целом.

Резисторы, изготовленные в корпусах с широкой контактной площадкой, обеспечивают рассеивание тепла по всей площади элемента, снижают вероятность разрушения резистора и точек пайки. Кроме того в резисторах с широкими контактами используется технология разделения резистивного слоя на отдельные сегменты и применение компенсационных прорезей в резистивном слое, обеспечивающие превосходные температурные характеристики резистора рис. 7. Материала резистивного слоя, на основе медно-никелевого сплава, примененный при производстве резисторов, обладает низким температурным коэффициентом и позволяет достигнуть максимального уровня рассеивания тепла и отменных температурных характеристик резисторов в процессе эксплуатации рис.8.

Рисунок 7. Структура резистора с широкой контактной площадкой

Рисунок 8. а) теплоотведение резистора с раздельными сегментами, б) обычный резистор

Применение в резисторах двухстороннего резистивного слоя позволяет уменьшить размеры требуемой площади на плате до 45%, увеличить мощность рассеяния резисторов, улучшить характеристики резистора, уменьшить номинальное сопротивление резистора, обеспечить надежность и увеличить срок службы рис.9.

Рисунок 9. Структура резистора с двусторонним резистивным слоем

Т.к. мощность рассеяния резисторов с двусторонним расположением резистивного слоя выше, а допустимые номиналы сопротивления резисторов ниже, чем у обычных резисторов, такие резисторы способны работать с более высокими токами, что позволяет сохранить площадь платы, и повысить надежность устройства.

Применение

Современные электронные устройства, это сложные устройства с множеством внутренних процессов. И контроль этих процессов является важной и неотъемлемой частью. Основным способом осуществления контроля, является измерение тока, протекающего в цепях электронного устройства. Применение токоизмерительных резисторов в электронике один из самых распространенных, недорогих и высокоточных способов измерения тока.

Гигантская популярность современных мобильных телефонов, гаджетов, мобильных вычислительных машин, автономных и переносных устройств, счетчиков ресурсов, систем умного дома и другой электроники требует громадное количество элементов питания, используемых в этих устройствах. И очень важно осуществлять контроль разряда и заряда этих элементов питания, позволяющего продлить срок службы, как элементов питания, так и самих устройств. Простым, надежным, точным и не дорогим способом контроля, является контроль протекающего тока на основе токоизмерительных резисторов.

Большинство современных блоков питания или драйверов для светотехники являются достаточно интеллектуальными приборами, контролирующими массу входных и выходных параметров, таких как наличие короткого замыкания, наличие/отсутствие нагрузки, коррекция мощности, контроль заряда аккумулятора, контроль выходного напряжения и тока. Контроль многих параметров источников питания осуществляется на основе токоизмерительных резисторов.

Робототехника и автоматика неотъемлемая часть современной жизни человека, поднимается лифт, перемалывается кофе в кофе машине, крутится вентилятор, катится электросамокат, работает вытяжка на кухне, работает шуруповерт, все эти устройства используют электромоторы. Многие из схем управления электромоторов этих устройств включают в себя токочувствительные элементы на основе резисторов позволяющие осуществлять контроль и функции защиты.

Современный автомобиль, это порой серьезный вычислительный центр, со множеством мультимедийных, коммуникационных и силовых электронных блоков, содержащий десятки электромоторов, силовых и сигнальных цепей, и высокой степенью контроля средств управления и безопасности автомобиля. Для обеспечения высокой надежности систем автомобиля, крайне важно контролировать электрические процессы и протекающие токи в цепях. Системы контроля токов на основе токоизмерительных резисторов Panasonic способны обеспечить высокую точность и надежность.

Заключение

Технология измерения тока посредством преобразования напряжения с помощью токочувствительных резисторов, в силу простоты схемного решения, стоимости, точности и надежности, является наиболее распространенной в современной электронике.

Уникальная технология производства резисторов, их высокое качество, подтвержденное наличием сертификатов, регламентированных для применения в автомобильной электронике, AEC-Q200, позволяет проектировать и создавать высоконадежные системы контроля и управления с применением токочувствительных резисторов Panasonic. Широкая номенклатура токочувствительных резисторов позволит подобрать требуемые элемент.

Описание

Серия резисторов

Типоразмер

Диапазон сопротивлений, Ом

Точность, %

T.C.R (ppm)

Мощность рассеяния, Вт

Диапазон рабочих температур, °C

Стандартные низкоомные толстопленочные резисторы

ERJ12RS

ERJ12ZS

ERJ14RS

ERJ1TRS

ERJ3RS

ERJ6RS

ERJ8RS

0402

0603

0805

1206

1210

1812

2010/ 2512

0.1…0.2

0.5 – D

1 – F

2 – G

5 - J

100

150

200

250

300

0.1

0.125

0.166

0.25

0.33

0.5

1

-55…+155

Стандартные низкоомные толстопленочные резисторы

ERJ12RQ

ERJ12ZQ

ERJ14RQ

ERJ1TRQ

ERJ3RQ

ERJ6RQ

ERJ8RQ

0402

0603

0805

1206

1210

1812

2010/ 2512

0.22…9.1

0.5 – D

1 – F

2 – G

5 - J

100

150

200

250

300

0.1

0.125

0.166

0.25

0.33

0.5

1

-55…+155

Низкоомные толстопленочные резисторы повышенной мощности

ERJ14BS

ERJ14BQ ERJ2BS

ERJ2BQ

ERJ3BS

ERJ3BQ

ERJ6BS

ERJ6DS

ERJ6BQ

ERJ6DQ

ERJ8BS

ERJ8BQ

0402

0603

0805

1206

1210

0.1…9.1

0.5 – D

1 – F

2 – G

5 - J

100

150

200

250

300

0.166

0.25

0.33

0.5

-55…+155

Низкоомные толстопленочные резисторы с низким TCR

ERJL12

ERJL14

ERJL1D

ERJL1W ERJL03

ERJL06

ERJL08

0603

0805

1206

1210

1812

2010

2512

0.02…0.1

1 – F

5 - J

100

200

300

0.2

0.25

0.33

0.5

1

-55…+125

Низкоомные толстопленочные резисторы с двухсторонним резистивным слоем, повышенной мощности

ERJ2BW

ERJ2LW

ERJ3BW

ERJ3LW

ERJ6BW

ERJ6CW

ERJ6LW

ERJ8BW

ERJ8CW

0402

0603

0805

1206

0.05…0.1

0.5 – D

1 – F

2 – G

5 - J

75

100

150

200

250

300

500

700

0.2

0.25

0.33

0.5

1

-55…+155

Низкоомные толстопленочные резисторы с широкими выводами, высокой мощности

ERJA1

ERJB1

ERJB2

ERJB3

1225

1020

0612

0508

0.05…1M

1 – F

2 – G

5 - J

100

150

200

300

0.33

0.75

1

1.33

-55…+155

Низкоомные толстопленочные резисторы с широкими выводами, низким TCR

ERJD1

ERJD2

ERJD3

1020

0612

0508

0.05…0.2

1 – F

5 - J

100

0.5

1

2

-55…+155

Доступность:

Резисторы Panasonic находятся в массовом производстве и доступны для заказа.

Ресурсы:

Каталог резисторов Panasonic 2020
Техническое руководство SMD резисторы
Информация по резисторам на сайте производителя
Заказать токочувствительные резисторы Panasonic