

Internet-Based Weather Data Acquisition

A Compact Webcam Design

Automated Data Mining

Time Server Design

Content Collection and Display

DMX Portal Design

Welcome to Circuit Cellar, the magazine for computer

applications. Over the last 21 years, Circuit Cellar has

been dedicated to publishing hands-on articles about

embedded design projects, tools, and techniques. These

articles are submitted from designers around the world

who want to highlight what they’ve been able to

accomplish in their labs.

Circuit Cellar has the good fortune of sharing design

contest co-sponsorship roles with a number of high-

profile chip companies in the industry. WIZnet joined

this impressive list of sponsors recently by co-sponsoring

the Circuit Cellar WIZnet iEthernet Design Contest.

The WIZnet iEthernet Design Contest excited Circuit

Cellar’s readership and encouraged many of the most

notable entrants to submit articles that further detailed

their accomplishments with the WIZnet devices.

Today, I am pleased to bring you this special archive

edition of Circuit Cellar articles so that you may see a

sampling of some interesting applications made possible

by WIZnet’s impressive chip technology. Enjoy!

Sincerely,

Sean Donnelly, Publisher

Inside this issue:

-iEthernet Bootcamp
-Winners Announcement
-The DMX Portal
-Content Collection & Display
-Automated Data Mining
-Time Server Design

-Networked Timing
-Wireless Mobile Robotics
-Web Camera Design
-Internet Weather Display

www.circuitcellar.com Issue 208 November 2007 1CIRCUIT CELLAR®

readers like you and I are looking for, I’m
all over it. For instance, I have found
that Ethernet ICs supported by free
TCP/IP stacks are very popular with
Circuit Cellar readers. I’ve also discov-
ered that many readers who implement
single-IC Ethernet devices don’t even
use a TCP/IP stack. Instead, like me,
they employ simple protocol drivers
specifically written for the single-IC
Ethernet device that they are deploy-
ing in their project. I practice what I
preach, and what I’m about to intro-
duce to you is the best of both the
garage Ethernet driver and TCP/IP
stack worlds. How would you like to
solder down a single-IC Ethernet solu-
tion that provides the power of a full-
blown commercial TCP/IP stack as if
it were a set of simple Ethernet driv-
ers? Read on, my friend.

WIZnet W5100
The WIZnet W5100 is

a single-IC Ethernet solu-
tion with a built-in
TCP/IP stack. The
W5100 folks like to call
their on-chip stack a
“hardwired stack”
because all of the
W5100’s Internet-
enabling goodies are con-
tained within a compact
80-pin LQFP. In addition

I recently received an e-mail from a
reader asking why there were no in-depth
TCP/IP stack “how-to” articles.
Honestly, I had never given that much
thought because I normally forego the
formal TCP/IP stack in favor of small,
easy-to-follow, home-brewed Ethernet
driver packages. As a magazine writer,
my first guess on the lack of TCP/IP
stack magazine literature is the cost
versus interest factor. I have reviewed
many commercial TCP/IP stack prod-
ucts and I can say from experience that
you get what you pay for. My readers
simply can’t afford or financially justify
a full-blown commercial TCP/IP stack
for their applications and projects.
Thus, why should I ask them to read
about a TCP/IP product that they can’t
afford to use? My second stab at why
TCP/IP stacks aren’t in magazine
vogue is complexity. Many of you have
written articles for magazines and you
know that you are limited to so many
words per article. It would take a series
of articles to explain everything you
would need to know about TCP/IP
stacks.

I must admit that in the past I have
offered up some pretty pricey stuff in my
articles. These days, I tend to shy away
from super-expensive and complex sub-
jects for the reasons I just outlined.
However, when I see something that
may be what typical technical magazine

to the W5100’s hardwired TCP/IP
stack, other W5100 Ethernet goodies
include an integrated IEEE 802.3
10Base-T and 802.3u 100Base-TX-com-
pliant MAC and PHY. As you would
expect, the W5100’s TCP/IP stack sup-
ports all of the things you need to put an
embedded Ethernet gadget on a network.
The W5100’s TCP/IP stack supports
TCP, UDP, ICMP, and ARP, which nor-
mally provide enough protocol power for
a major portion of embedded Ethernet
LAN and Internet projects that are
launched by folks like you and me.
PPPoE is also supported by the W5100.
The inclusion of PPPoE enables you to
use the W5100 in ADSL applications.

If you’ve ever toyed with embedded
Ethernet, you know that the lack of a
transmit or receive buffer memory can

iEthernet Bootcamp

FEATURE ARTICLE by Fred Eady

Are you ready to join the Ethernet revolution? If so, it’s time to start working with WIZnet’s
W5100 hardwired TCP/IP embedded Ethernet controller. In this article, Fred helps you get
started on your first W5100-based design.

Get Started with the W5100

Photo 1—My WIZnet W5100 development board is based on the
Microchip Technology PIC18LF8722. The PIC18LF8722 is hefty enough to
enable the selective use of Direct Memory mode, Indirect Memory mode,
and SPI mode access to the W5100’s registers and buffer memory. Using
the Microchip PIC18LF8722 also puts the powerful set of Microchip devel-
opment tools at our disposal.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2006 Circuit
Cellar Inc. All rights reserved.

2 Issue 208 November 2007 CIRCUIT CELLAR® www.circuitcellar.com

be painful and hamper the perform-
ance of your embedded Ethernet device.
The embedded Ethernet IC manufactur-
ers are aware of this. Most of the single-
IC Ethernet solutions offered these days
include a fair amount of dedicated
transmit and receive buffer memory.
The W5100 is no exception, and it is
equipped with 16 KB of internal trans-
mit/receive buffer memory.

To avoid the exclusion of smaller
microcontrollers, the W5100 can com-
municate with a host of microcontrollers
using an SPI, direct memory access, or
indirect memory access. To further
accommodate the majority of today’s
newer microcontrollers, the W5100 is
powered with a 3.3-VDC power source.
This enables the W5100 to be directly
interfaced to low-power microcontrollers
that also run on a 3.3-VDC power rail.
The W5100 can also be integrated into
legacy 5-VDC systems because its I/O
subsystem is 5-V tolerant.

The W5100 supports up to four
simultaneously active sockets. Thus,
all you need to know is basic socket
programming because you will be
shielded from the W5100’s internal
Ethernet engine operations. The W5100
is designed to provide the bulk of every-
thing needed to produce a working

embedded Ethernet device while being
easy to use. The only things the W5100
won’t do for you are write its own
code and handle IP fragmentation.

I just happen to have a couple of
W5100 ICs. Let’s assemble a W5100-
based device from scratch. Once we’ve
got the W5100 hardware realized,
we’ll put together some Microchip
Technology PIC18LF8722 driver code
for our W5100 development board.

BUILD A DEVELOPMENT BOARD
For your convenience, I am supplying

the PCB layout for an EDTP Electronics-
designed W5100 device (see Photo 1).
The PCB layout file on the Circuit Cellar
FTP site is in ExpressPCB format. I chose
ExpressPCB because it is a relatively
inexpensive PCB manufacturing service
that is available to everyone.
ExpressPCB software is free for download,
and the quality of ExpressPCB PCBs is
excellent. Another plus associated with
using ExpressPCB is that you don’t
have to design your W5100 PCB from
scratch. You can use my ExpressPCB PCB
template and modify it to meet your
needs. If you already have a favorite PCB
CAD program, you can easily port my
design to your CAD format using my
original drawing as a guide. As you would

expect, I haven’t done anything to com-
plicate the W5100 project board design.

The EDTP WIZnet W5100 project
board is basically a standard
PIC18LF8722 configuration that is
wired into a basic W5100 configura-
tion. As you can see in Figure 1, the
PIC18LF8722 has enough I/O to wire-in
the 15-bit W5100 address bus, the 8-bit
W5100 data bus, and all of the W5100
control signals (*RD, *WR, *CS, and
*INT) with I/O to spare. In addition to
wiring in the W5100 in Direct Bus
Interface mode (A0:A14 with D0:D7
and control signals), I attached the
W5100’s SPI portal and an SPI select
pin to the PIC18LF8722’s SPI I/O inter-
face, which enables you to access the
W5100’s internals in W5100 SPI
mode. Because the W5100’s address lines
are all pulled down internally, the
Indirect Bus Interface mode of opera-
tion, which uses only two of the 15
address lines, all of the eight data lines,
and all of the control signals can also be
easily implemented with the EDTP
WIZnet W5100 design.

All of the PIC18LF8722’s 80 I/O and
power lines are pinned out in blocks
of 20 pins to standard 0.1″ header
pads. The PIC18LF8722 is supported
by a 20-MHz clock, a Microchip-certi-

Figure 1—Nothing much I need to say about what you see here. However, the PIC18LF8722 does remind me of my favorite Military Channel quote: “It’s just a good, solid tank.”

www.circuitcellar.com CIRCUIT CELLAR® Issue 208 November 2007 3

fied ICSP programming/debugging por-
tal, and a regulation RS-232 port. I did
not include any power supply circuitry
because a Digi-Key-supplied 3.3-VDC
wall wart does a great job powering the
W5100 project board and the external
programming/debugging hardware.

On the W5100 side of the EDTP
W5100 development board, the W5100
is supported by the required 25-MHz
crystal and an all-in-one can of magnet-
ics (see Figure 2). I chose to incorporate
the U.D. Electronic RDI-125BAG1A
pulse transformer for a couple of rea-
sons. First, the RDI-125BAG1A footprint
fits exactly into the old packet whacker
pulse transformer footprint, for which I
already have a time-proven ExpressPCB
pad layout. Second, like the old packet
whacker mag jack package, the RDI-
125BAG1A has a pair of built-in indica-
tor LEDs in addition to a pair of trans-
mit and receive pulse transformers and
the required internal terminating resis-
tors. If you’ve ever worked with the
EDTP ASIX-based and Microchip-based
Ethernet development boards, you’ll
notice that the W5100 PHY connections

are very similar to the EDTP Electronics
ASIX and Microchip ENC29J60 designs.

You may wonder why there are no
bypass components on the W5100’s
internally generated 1.8-VDC supply.
That question was posted on the

W5100 online technical support ques-
tion-and-answer board. The W5100
engineering answer was to follow the
path that was set forth by the W5100
reference schematic, which is void of
1.8-VDC supply bypass components.

Because the EDTP WIZnet W5100
project board is designed to help you get
your W5100 design up and running
quickly, I attached all of the W5100 LED
indicator lines to LEDs. The pair of RDI-
125BAG1A LEDs is connected to the
W5100’s LINKLED and RXLED status
indicator I/O pins. I pulled the TXLED,
COLLED, FDXLED, and SPDLED indi-
cators out to discrete LEDs, which you
can see in Photo 1 hanging above the
city of WIZnet W5100 0805 supporting
SMT components. I have also provided a
jumper to select W5100 SPI mode if you
choose to run your W5100 in that
manner. The only oddity I need to
point out is the 12.3-kΩ reset resistor
pair you see in Figure 2, which is
attached to the W5100’s RSET_BG
pin. A bird’s-eye view of the W5100
portion of the EDTP WIZnet W5100
development board is in Photo 2.

Photo 2—There’s nothing here you can’t handle. With the
exception of the 12.3-kΩ resistor pair, the line of compo-
nents closest to the W5100 is all filter and bypass compo-
nents. The PHY components are in the line closest to the
pulse transformer. Note the status LEDs and the SPI select
jumper at the port and starboard extremes of this photo.

Figure 2—You can get your hands on most everything here from Digi-Key or Mouser Electronics. My friends at Saelig supply the W5100 IC. Saelig doesn’t stock the RD1-
125BAG1A on its site, but you can probably get the pulse transformer from many of the vendors listed on WIZnet’s web site.

4 Issue 208 November 2007 www.circuitcellar.com

the definition code that lays out all of
the W5100’s internal register addresses.
The W5100 factory include file also con-
tains definitions of all of the W5100
register contents, which I’m sure will
come in handy later. I lost a bunch of
time chasing my soldering snafu, but I
gained some of that time back by
Microchip-izing the original AVR
include file.

My first official W5100 firmware act
was to punch the W5100 into a hardware
reset (see Listing 1). Since I went to all of
the trouble to fix those W5100 address
and data solder joints, I’m going to run
in W5100 Direct Bus Interface mode.
Running in Direct Bus Interface mode
means that I don’t have to touch the

W5100 Mode register, which happens to
be the very first W5100 Common regis-
ter. So, we can run our initial
W5100/PIC18LF8722 I/O test on the set
of Gateway Address registers at address
range 0x0001:0x0004. The Gateway
Address register addresses GAR0:GAR3
are defined in the include file I convert-
ed, which I renamed w5100_pic.h. As
you can see in Listing 1, I put together
some basic PIC18LF8722 I/O routines
to read and write the W5100 registers.
Then, I wrote the contents of the
gwayipaddrc array to the W5100’s
Gateway Address Common register set.
To make sure I performed the Common
register write, I turned around and read
the contents of GAR0:GAR3 into an array

CIRCUIT CELLAR®

As you can see, the W5100 hard-
ware is a no-brainer. Before we move
on to do some W5100 coding, what
you don’t see in Photo 1 is the heart-
beat LED I attached to RG4 on the
PIC18LF8722. It’s just there as a warm
fuzzy to let me know that things are
moving on the firmware side. I flash
the RG4 LED at a rate of 1 Hz via the
PIC18LF8722’s Timer3 interrupt-driv-
en real-time clock code.

WIZNET W5100 GARAGE CODE
From a WIZnet W5100 programmer’s

point of view, the W5100 consists of
Common registers, Socket registers, TX
memory, and RX memory. The W5100’s
Common registers consist mostly of
W5100 local IP and MAC addressing
fields. Also included within the confines
of the Common registers are RX and TX
memory sizes and PPP/PPPoE parame-
ters. It looks like we will be populat-
ing most of the Common registers. So,
let’s kill two birds with one stone and
use the Common registers to test the
PIC18LF8722 driver hardware by writ-
ing some basic PIC18LF8722 routines to
read and write the W5100’s registers. I’ll
use the HI-TECH PICC-18 C compiler
in conjunction with MPLAB and a
Microchip Technology REAL ICE as
my W5100 firmware brewing tools.

About 18 hours later, I returned to
write this sentence. I could not get
my W5100 to communicate correctly
with the PIC18LF8722 to save my life.
A cursory look at the W5100 project
board didn’t indicate any problems. So, I
turned to my C code to see if I could find
the bug. As it turns out, my C was fine,
but my eyes deceived me. A great num-
ber of the PIC18LF8722 W5100 address
and data I/O pins simply did not get sol-
dered to the W5100 PCB. I use an indus-
trial hot air reflow machine to mount
fine-pitched ICs like the W5100 on a reg-
ular basis. I’ve done so many of them
that I take the process for granted. Well,
this time the reflow machine bit me.

In the meantime, I managed to put
some W5100 I/O code together. The
official factory W5100 driver code I have
is written for AVR devices. So, rather
than build my own PIC W5100 include
file, I de-Atmeled the factory-supplied
W5100 include file. Right now, all I real-
ly want from the W5100 include file is

Listing 1—You won’t find this level of coding in the W5100 datasheet examples. Nothing will whizz about with-
out these base register I/O routines.

char gwayipaddrc[4] = {192,168,0,1};
char svrmacaddrc[6];

#define make8(var,offset) ((unsigned int)var >> (offset * 8)) & 0x00FF
#define TO_WIZ TRISF = 0x00
#define FROM_WIZ TRISF = 0xFF

void wr_wiz_addr(unsigned int addr)
{

addr_hi = (make8(addr,1));
addr_lo = addr & 0x00FF;

}
void wr_wiz_reg(char reg_data,unsigned int reg_addr)
{

TO_WIZ;
wr_wiz_addr(reg_addr);
data_out = reg_data;
clr_WR;
NOP();
set_WR;
FROM_WIZ;

}
char rd_wiz_reg(unsigned int reg_addr)
{

char data;
wr_wiz_addr(reg_addr);
clr_RD;
NOP();
data = data_in;
set_RD;
return(data);

}

clr_RSET;
msecs_timer2 = 0;
while(msecs_timer2 < 2);
set_RSET;
addri = GAR0;
for(i8=0;i8<4;++i8)

wr_wz_reg(gwayipaddrc[i8],addri++);
addri = GAR0;
for(i8=0;i8<4;++i8)

svrmacaddrc[i8] = rd_wz_reg(addri++);

www.circuitcellar.com CIRCUIT CELLAR® Issue 208 November 2007 5

called svrmacaddrc. You can imagine
how pleased I was to see the gateway IP
address represented in hexadecimal
format in the MPLAB WATCH win-
dow shot you see in Photo 3. I tested a
bit further by using my W5100 register
read routines to read the RTR0 Common
register pair, which defaults to 0x07D0
and the RCR Common register that fol-
lows and defaults to 0x08. All went well.
So, I initialized the W5100’s gateway,
MAC address, subnet mask, and IP
address Common registers.

The next step on our way to putting
the W5100 project board online involves
setting up and defining the socket mem-
ory information. We’ll use the default of
2-KB-per-socket sizing, which means we
don’t touch the RMSR (RX memory
size) and TMSR (TX memory size)
default register values (0x55). As you
can see in Listing 2, all we are really
doing is establishing the receive and
transmit memory boundaries for each of
the four sockets that the W5100 sup-
ports. With the socket memory alloca-
tion task behind us, we can concen-
trate on what it takes to manipulate a
W5100 socket.

The topmost portion of Listing 3 is
the code we will execute to open a
W5100 UDP socket. The first order of
business is to tell the W5100 what type
of socket we want to work with. We are
working with UDP at the moment. So, I
loaded the socket 0 Mode register with a
UDP socket value. I already have an
application (EDTP Internet test panel)

that will send ASCII characters to
well-known port 7 and, as you can see
in Listing 3, I’ve loaded the socket 0
Source Port register with 0x0007. We’ve
already loaded our IP and MAC infor-
mation. Thus, the addition of the UDP
source port value enables us to open a
UDP socket. From the proliferation of
zeros in the Listing 3 socket initializa-
tion code, it should be obvious that we
will open the W5100’s socket 0 in

UDP mode.
Once the socket comes online, we

have the power to send and receive UDP
datagrams. There are a couple of ways to
sense an incoming UDP datagram. We
can poll the socket’s Received Size regis-
ter or look for the RECV bit in the sock-
et’s Interrupt register. As you can see
in the UDP datagram receive code that
occupies the center section of Listing 3, I
have chosen to use the latter.

An incoming UDP datagram sets the
RECV bit of the socket’s Interrupt regis-
ter. Our first reaction to this is to clear
the RECV bit by writing a “1” to corre-
spond to the RECV bit’s position within
the Interrupt register. The W5100 takes
care of checksums internally and we, as
programmers, never see them in our
UDP datagram information. The size of
the incoming UDP datagram is automat-
ically posted in the socket’s Receive Size
register. Here, we retrieve the contents
of the Receive Size register and place the
value into the get_size variable. I used
the W5100’s datasheet variable names
where possible to make it a bit easier for
you to compare my W5100 driver code
with the UDP pseudocode flow example
in the W5100 datasheet. The receive
buffer’s read pointer value is kept in the

Photo 3—With the success of reading back what I stored in the WIZnet gateway IP address register, we’ve estab-
lished a base of operations for reading and writing the W5100’s internal registers.

Listing 2—The W5100 datasheet talks about this with pseudocode. Here’s my translation.

#define chip_base_address 0x0000
#define RX_memory_base_address 0x6000
#define gS0_RX_BASE chip_base_address + RX_memory_base_address
#define gS0_RX_MASK 0x0800 - 1
#define gS1_RX_BASE gS0_RX_BASE + (gS0_RX_MASK + 1)
#define gS1_RX_MASK 0x0800 - 1
#define gS2_RX_BASE gS1_RX_BASE + (gS1_RX_MASK + 1)
#define gS2_RX_MASK 0x0800 - 1
#define gS3_RX_BASE gS2_RX_BASE + (gS2_RX_MASK + 1)
#define gS3_RX_MASK 0x0800 - 1
#define TX_memory_base_address 0x4000
#define gS0_TX_BASE chip_base_address + RX_memory_base_address
#define gS0_TX_MASK 0x0800 - 1
#define gS1_TX_BASE gS0_TX_BASE + (gS0_TX_MASK + 1)
#define gS1_TX_MASK 0x0800 - 1
#define gS2_TX_BASE gS1_TX_BASE + (gS1_TX_MASK + 1)
#define gS2_TX_MASK 0x0800 - 1
#define gS3_TX_BASE gS2_TX_BASE + (gS2_TX_MASK + 1)
#define gS3_TX_MASK 0x0800 - 1

6 Issue 208 November 2007 CIRCUIT CELLAR® www.circuitcellar.com

socket’s Read Pointer register. We will
use the read pointer value to form the
basis for the variable get_offset,
whose value we will combine with the
socket’s receive buffer base address to
calculate the beginning address of the
UDP datagram’s header. The UDP
datagram header offered by the W5100
is made up of 4 bytes of destination IP
address, 2 bytes of destination port
address, and 2 bytes of data size informa-
tion. Thus, the header_size variable
value is eight. Once all of the addressing
calculations have been made, we can use
our W5100 read register routine to
store the data away in the
PIC18LF8722’s SRAM for later.

Logically, what is not header infor-
mation must be data information
because we are protected from check-
sums by the W5100 architecture.
With that, we can deduce that the
udp_data_size variable will contain
the number of data bytes we need to
retrieve and store. Again, using our
home-brewed W5100 I/O code, we read
the data from the W5100 receive buffer
memory and store it in the appropriate
PIC18LF8722 SRAM locations. Our
absorption of the UDP datagram and
its header is complete. We end our
receive session by issuing the RECV
command in the socket’s Command reg-
ister, which updates the receive buffer
pointers. For those of you who are fol-
lowing along with the pseudocode flow
in the W5100 datasheet, note that the
udp_data_size variable is not a
W5100 datasheet variable. It’s a Fred
variable.

Sending a UDP datagram is very simi-
lar to receiving one. We’ll reuse the
information we received earlier and
bounce a UDP message back at the
sender. Recall that our received UDP
datagram header contained a destination
IP address and a destination UDP port
value. We thought ahead and stored
both of the header values. Now all we
have to do is retrieve them from the
PIC18LF8722’s SRAM and load them
into the proper W5100 Socket registers.
I begin my UDP datagram transmission
in that manner within the bottom por-
tion of the code in Listing 3. Using the
socket’s transmit buffer write pointer, I
calculate where in the W5100 transmit
buffer to begin stuffing the data I wish

Listing 3—Think about it. All you ever do with any communications device is receive and transmit. I pulled the
logic behind this code from the pseudocode flow in the W5100’s datasheet.

//SOCKET INTI**
do{
wr_wiz_reg(Sn_MR_UDP,Sn_MR(0)); //protocol = UDP
wr_wiz_reg(0x00,Sn_PORT0(0)); //well-known ECHO port
wr_wiz_reg(0x07,Sn_PORT1(0));
wr_wiz_reg(Sn_CR_OPEN,Sn_CR(0)); //give the open command
if(rd_wiz_reg(Sn_SR(0)) != SOCK_UDP) //wait for the socket to come online

wr_wiz_reg(Sn_CR_CLOSE,Sn_CR(0));
}while(rd_wiz_reg(Sn_SR(0)) != SOCK_UDP);

//RECEIVE**
do{
//look for incoming UDP datagrams
i16 = rd_wiz_reg(Sn_IR(0));
}while(i16 == 0);
wr_wiz_reg(0x04,Sn_IR(0));
//get the datagram size
hi_byte = rd_wiz_reg(Sn_RX_RSR0(0));
lo_byte = rd_wiz_reg(Sn_RX_RSR1(0));
get_size = make16(hi_byte,lo_byte);
//get the datagram's buffer offset
hi_byte = rd_wiz_reg(Sn_RX_RD0(0));
lo_byte = rd_wiz_reg(Sn_RX_RD1(0));
get_offset = make16(hi_byte,lo_byte) & gS0_RX_MASK;
//calculate the datagram's starting buffer address
get_start_address = gS0_RX_BASE + get_offset;
//UDP header size
header_size = 8;
//store the UDP header information
addri = get_start_address;
for(i8=0;i8<header_size;++i8)
{

packet[ip_destaddr+i8] = rd_wiz_reg(addri++);
++get_offset;

}
//store the UDP data
get_start_address = gS0_RX_BASE + get_offset;
udp_data_size = get_size - header_size;
addri = get_start_address;
for(i8=0;i8<udp_data_size;++i8)
{

packet[UDP_data+i8] = rd_wiz_reg(addri++);
++get_offset;

}
//update the receive buffer pointers
wr_wiz_reg(Sn_CR_RECV,Sn_CR(0));

//TRANSMIT***
//load destination IP address
addri = Sn_DIPR0(0);
for(i8=0;i8<4;++i8)

wr_wiz_reg(packet[ip_destaddr+i8],addri++);
//load destination port address
addri = Sn_DPORT0(0);
for(i8=0;i8<2;++i8)

wr_wiz_reg(packet[UDP_srcport+i8],addri++);
//get transmit buffer offset
hi_byte = rd_wiz_reg(Sn_TX_WR0(0));
lo_byte = rd_wiz_reg(Sn_TX_WR1(0));
get_offset = make16(hi_byte,lo_byte) & gS0_TX_MASK;
//calculate transmit data buffer start address
get_start_address = gS0_TX_BASE + get_offset;
//load data into transmit buffer
addri = get_start_address;
for(i8=0;i8<udp_data_size;++i8)
{

wr_wiz_reg(packet[UDP_data+i8],addri++);
++get_offset;

}
//update transmit buffer pointer
wr_wiz_reg((make8(get_offset,1)),Sn_TX_WR0(0));
wr_wiz_reg((make8(get_offset,0)),Sn_TX_WR1(0));
//send data
wr_wiz_reg(Sn_CR_SEND,Sn_CR(0));
while(rd_wiz_reg(Sn_CR(0)));

to transmit. I then transfer the previous-
ly stored UDP datagram data from the
PIC18LF8722’s SRAM into the W5100’s
transmit buffer. The W5100 will trans-
mit the data located between the sock-
et’s transmit read pointer and transmit
write pointer. So, I must update the
transmit write pointer by increasing it
by the number of bytes I need to trans-
mit. Once that’s done, I issue the SEND
command and wait for the send success
signal, which is a cleared socket
Command register. I can now issue a
CLOSE command in the socket’s
Command register to close the socket or
send or receive another UDP datagram.

CONGRATULATIONS!
You have completed W5100 bootcamp.

In addition to the W5100 register I/O
code, UDP transmit code, and UDP
receive code, you have a basic and
flexible W5100 hardware design to
work with.

Here’s a hint that will help you
determine very early on where your
W5100 design stands: Execute only the
code through loading the IP address.
Load the gateway address, the MAC
address, the subnet mask, and the IP
address. Don’t open any sockets. At
this point, you can PING your W5100
design. If you get good PING returns,
your PHY hardware and your W5100
register I/O code are good to go.
You’ve also tested and confirmed the
operation of your W5100 address, data,
and control signals. Bringing up UDP
is a fun and easy way to get to know
the W5100. The EDTP Internet test
panel is a UDP application that runs
on your PC. The EDTP Internet test
panel is available for download from
www.edtp.com. I

www.circuitcellar.com CIRCUIT CELLAR® Issue 208 November 2007 7

SOURCES
EDTP Internet test panel
EDTP Electronics, Inc.
www.edtp.com

HI-TECH PICC-18 C Compiler
HI-TECH Software
www.htsoft.com

PIC18LF8722 Microcontroller, REAL
ICE, and MPLAB
Microchip Technology, Inc.
www.microchip.com

RDI-125BAG1A Pulse transformer
U.D. Electronic Corp.
www.ude-corp.com

W5100 TCP/IP Ethernet controller
WIZnet, Inc.
www.ewiznet.com

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/208.

Fred Eady (fred@edtp.com) has more
than 20 years of experience as a sys-
tems engineer. He has worked with
computers and communication sys-
tems large and small, simple and
complex. His forte is embedded-sys-
tems design and communications.

FIRST PLACE
Drip Irrigation Controller
The irrigation timer with advanced planning
(ITAP) is a truly next-generation irrigation con-
trol system. Featuring a WIZnet WIZ810MJ net-
work module and an Atmel ATmega168, the
innovative controller provides user interaction
through a standard web browser. As a result, the
system doesn’t have a keyboard or an LCD. The
single-controller unit can manage up to eight
zones. No software installation is required. Its
functionality is split between the browser-based
user interface and the hardware-based web serv-
er, data model, and control logic. The web server
is used to read and write the internal data model.
Its other function is to return files stored in
internal program memory. Precision irrigation
control is now a reality because the system pro-
vides useful information such as watering schedules
and zone activity.

Thomas Bereiter
Italy
itimer@micaview.com

WINNERS ANNOUNCEMENT
The WIZnet iEthernet Design Contest 2007 gave engineers throughout the embedded design

community a chance to join the Ethernet revolution while competing for a share of $15,000 in
cash prizes and international recognition. Designers from around the world quickly stepped up to
the challenge by incorporating WIZnet’s W5100 hardwired TCP/IP Ethernet controller in innovative
embedded projects. Within weeks of the contest launch, designers began submitting their exciting,
next-generation, Ethernet-enabled embedded systems.

After spending many long days and nights closely studying the entries and judging them on
their technical merit, originality, usefulness, cost-effectiveness, and design optimization, the
judges presented their scores to the contest administrator. The results are now final, and we’re
proud to announce the winners.

Congratulations to everyone who took part in the contest!

To see these projects and more, visit www.circuitcellar.com/wiznet/.

“My project is an irrigation timer. Timers are simple devices, but their
user interfaces are unreasonably complex. An Ethernet connection made
it possible to correct this imbalance by using a remote browser in place of
a local LCD and keypad. Once browser-connected, it was possible to add
‘what if’ planning tools that would be unthinkable on a stand-alone device.
The hardware is simply an ATmega168, a ULN2803 driver chip, the
WIZnet module, and not much else. I had been looking at various ways of
adding browser support to a USB-based design. Previously, I had rejected
Ethernet for either cost or complexity reasons. When the design contest
introduced the WIZnet module, it was instantly clear that it would great-
ly simplify the design. With the WIZnet module, I could keep the parts
count down and not waste scarce flash memory on networking code.”

— Thomas Bereiter

winners.qxp 4/9/2008 11:44 AM Page 30

mailto:itimer@micaview.com
http://www.circuitcellar.com/wiznet/

SECOND PLACE
LED News Ticker
The handy LED News Ticker brings the news to you by display-
ing up-to-date headlines in a scrolling format. The system fea-
tures a main board and eight slave boards attached to dot-matrix
LED displays. The main board features a Microchip Technology
PIC18F2525 microcontroller connected to a WIZnet WIZ810MJ
Ethernet module, which uses the W5100 to provide an easy-to-use
interface to the Internet. The LED News Ticker requires no interac-
tion to operate. Once powered up, the device immediately connects
to the Internet and downloads news updates every 15 minutes. It
handles all DHCP leasing and DNS resolving, allowing you to
use dynamic IP addresses.

James Blackwell
U.S.
azoore@azosoft.com

THIRD PLACE
DMX Portal
The well-designed DMX Portal is an affordable DMX lighting con-
troller. You can use the novel system to remotely control up to 512
channels through an IP-based network or directly interface them to
embedded systems with a serial connection. It was designed to be
perfectly suited for designers who want to off-load DMX manage-
ment and refreshes from the main system controller. It’s also useful
for distributed lighting systems where low-cost Ethernet wiring is
more practical than expensive RS-485 wiring. The prototype includes

an external EEPROM for
scene storage and a Microchip
Technology PIC18F4620
microprocessor. A WIZnet
WIZ810MJ evaluation board
is connected to the SPI on the
PIC development board.

Matt Ernst
U.S.
nomadelectronics@gmail.com

“The LED News Ticker consists of a main board that communi-
cates to eight individual slave boards. The main board is fairly
simple, using only a PIC18F2525 and a WIZ810MJ module to con-
nect to the Internet. Each slave board piggybacks to a single 8 × 8
dot-matrix LED display, which is controlled by a PIC18F2221. The
main board scrolls news headlines across the display by manipu-
lating data in a frame buffer that is sent to the slave boards.
The WIZnet modules really simplified the design of my system
without sacrificing any usability. I plan on using them in future
projects as well.”

— James Blackwell

FOURTH PLACE
Remote Real Virtual Instrument Interface
With the amazing Remote Real Virtual Instrument Interface, you
can control any musical instrument with a MIDI input and capture
its audio output over the Internet. You can also use the well-
designed streaming media device to record audio if you don’t need
MIDI. It features a WIZnet W5100 hardwired TCP/IP chip, a
Ramtron VRS31L3074 microcontroller, and a Texas Instruments
TLV320AIC23B audio CODEC. The system’s software is
split into two parts: an embedded portion for the
VRS31L3074 microcontroller and a PC portion for the
VSTi plug-in. The PC-side software provides the interface
to the virtual music studio software.

Clemens Valens
France
cvalens@yahoo.com | www.polyvalens.com

“My project is a networked audio and MIDI interface that integrates
with virtual music studio software that supports the VST standard. The
host sends UDP packets with MIDI data over the network to the proces-
sor and the processor outputs the MIDI data on its MIDI port. A syn-
thesizer responds to the MIDI data by playing a sound. The audio CODEC
samples the synthesizer output and transfers the samples to the proces-
sor. The processor fills UDP packets with these samples and sends them
over the network to the host. The host then plays the sound. The W5100
allowed me to use simple hardware to build my project. I was actually
looking into some kind of FPGA solution when this one came along. No
need to sacrifice half of your processor power for a TCP/IP stack.”

— Clemens Valens

“The DMX Portal is a self-contained lighting controller for embedded systems and large distributed sys-
tems. I started this project because I wanted to be able to control moving lights and other special effects
that use the DMX protocol from a system that was low cost and could change the lighting state based on
digital triggers or simple commands from other systems. The WIZnet parts were a good fit for my design
for several reasons. I was already using the PIC’s hardware UART for my optional RS-232 interface, which
required me to generate the DMX serial output completely in software. Since the DMX output requires
precise timing to generate the correct bit rate, I need to disable all interrupts while the DMX data is
being refreshed. The W5100 offers a very large buffer which is sufficient to store incoming commands
arriving while the processor is unable to process the incoming data. Another reason the parts were a good
fit was that the chip handles all the tasks of receiving and transmitting a UDP packet.”

— Matt Ernst

To see these projects and more, visit www.circuitcellar.com/wiznet/.

winners.qxp 4/9/2008 11:44 AM Page 31

mailto:azoore@azosoft.com
mailto:nomadelectronics@gmail.com
mailto:cvalens@yahoo.com
http://www.polyvalens.com
http://www.circuitcellar.com/wiznet/

FATE: Flexible Audio Transmission Over Ethernet
This project addresses the idea of digital audio for the masses. The purpose of flexible audio trans-
mission over Ethernet (FATE) is to set up a simple dedicated wired Ethernet network. You can then
use the network to coordinate the distribution of high-quality audio signals throughout a building
and the area around it. The useful design uses a full parallel bus interface to a WIZnet W5100 IC.
The IC is memory mapped on the “auxiliary bus” (expansion bus) of the processor core. Its register
values can be seen and manipulated at any time. Interrupts aren’t used.

John Clayton
U.S.
jclaytons@earthlink.net

“My project is an atypical way of looking at audio distribution to speaker boxes. It separates the
audio signal from the raw power. That way, the power can be provided right at the speaker boxes,
and the information signal can be transmitted to a set of surround-sound speakers directly, using
dedicated CAT-5 wired Ethernet links. Digital audio is noise immune, and the mantra of my project
becomes: ‘No more MONSTER cables! Use these cheap CAT-5 cables instead!’ I enjoyed the self-
contained nature of the WIZ810MJ, especially the cool Ethernet jack with built-in pulse trans-
former. I also liked the ‘auto-crossover-cable adjustment’ feature of the W5100 chip.”

— John Clayton

Portable Network Service Monitor
This portable network service monitor was developed to help network
administrators supervise datacenters. The handy monitor—which fea-
tures a WIZnet WIZ810MJ module and an Atmel ATmega128 micro-
controller—is equipped with a 4 × 20 LCD that can display important
messages from any configured server in a local network. It also
continuously checks connectivity to predefined services on different
machines. When problems occur, it triggers an alarm.

Alexander Popov & Peter Popov
Bulgaria
sasho@popovbrothers.com

HONORABLE MENTION

“We built a handheld network monitor
that is not only an inexpensive solution,
but also an extremely flexible one. The
device consists of a WIZnet WIZ810MJ
module, an Atmel ATmega128L microcon-
troller, a power supply, a 4 × 20 LCD, and a
TTL-to-RS-232 converter for debugging.
The WIZ810MJ module fits quite well in
an 8-bit TCP/IP-enabled design without
external memories, thus saving money and
space. We enjoyed working with the mod-
ule because of the easy hardware inter-
facing and good how-to documentation.”

— Alexander Popov & Peter Popov

ThermoNet
The ThermoNet is a web-based, remote control, residential HVAC thermostat.
The well-designed system includes an easy-to-use LCD front panel and a built-
in web server. The front panel includes four buttons: Mode, Fan, Up, and
Down. The hardware consists of a WIZnet WIZ810MJ module connected to an
Atmel ATmega128 microcontroller external memory interface via direct memo-
ry mapping. An Atmel DataFlash chip provides ample storage for embedded
web pages and is easily updated with new web pages and other files via a
Windows-based program.

Kevin Houser
U.S.
thermonet@rocketfarmers.com“ThermoNet is a web-enabled, dual-use project. It was designed and built to provide an easy-to-use web interface to manage heat-

ing and cooling energy usage, as well as water usage for irrigation. The primary parts used are an Atmel ATmega128, a WIZnet
WIZ810MJ Ethernet engine, a Dallas RTC with 32 KB of nonvolatile static RAM, a 512 KB to 2 MB Atmel DataFlash memory, two
temperature sensors, and a 2 × 16 LCD with LED backlight. The WIZnet parts were almost perfect for my project because they
allowed me the freedom to implement any UDP or TCP/IP protocols I cared to develop or use. Many microcontroller-targeted
Ethernet solutions are simply serial-to-Ethernet adapters or provide a canned web server implementation with limited expandability.”

— Kevin Houser

Travel WIZard
The incredible Travel WIZard is an embedded server application that helps you find airfare
deals. The useful system uses Kayak, an online travel search engine, to explore the Internet.
It then returns data that can be graphed to reveal the cheapest time of year to travel. The
Travel WIZard features a WIZnet W5100 Ethernet controller and a Microchip Technology
PIC24FJ128GA010 MCU, which resides on an Explorer 16 development board. The board
includes a 32K × 8 serial EEPROM, LEDs, buttons, and a 2 × 16 LCD.

Matthew Pennell & Aaron Thomas
U.S.
alphatango22@gmail.com“The Travel WIZard is an embedded server data-mining application. It allows the user to acquire airfare data to look for

trends in ticket price. The software is written in such a way so as to support eventual expansion to other automated Internet
tasks. Ultimately, we wanted to see if we could design a customizable platform that could be programmed to do any type of
automated online data mining task. In addition, of course, to the WIZ810MJ with W5100, the system consists of a Microchip
Explorer 16 development board with a PIC24FJ128GA010 MCU and 32K × 8 serial EEPROM. From a hardware perspective, we
appreciated how easy it was to prototype with the WIZ810MJ plug-in module. From a software perspective, we found it easy
to quickly learn to use the W5100. We found the part to be an ideal tool for learning the nuts and bolts of how the Internet
actually works under the hood.”

— Matthew Pennell & Aaron Thomas

To see these projects and more, visit www.circuitcellar.com/wiznet/.

winners.qxp 4/9/2008 11:44 AM Page 32

mailto:jclaytons@earthlink.net
mailto:sasho@popovbrothers.com
mailto:thermonet@rocketfarmers.com
mailto:alphatango22@gmail.com
http://www.circuitcellar.com/wiznet/

Greener Lawn: A Sprinkler Control System
The well-made Greener Lawn system gathers historical weather data and forecasts and then makes
intelligent watering decisions based on that data. The design features an ATmega128 processor con-
nected to the Internet through a WIZnet WIZ810MJ. The weather forecasting and rainfall totals
come from the National Weather Service’s FTP server. Linux shell and Perl scripts gather the data
and parse out the rainfall totals. This is stored as plain text files on the Linux web server. A PHP
script running on an Apache web server enables you to configure the sprinkler controller. A second
PHP script ties all of this information together into a single downloadable file that is requested by
the WIZ810MJ.

Zack Clobes
U.S.
zack@custom-ds.com“A long-time pet peeve of mine has been watching underground lawn sprinklers running during a rain shower, or when it’s obvious that a

shower is coming at any moment. It seems like such a waste to consume that energy and water. The Greener Lawn sprinkler controller sys-
tem aims to be smart enough to make some basic decisions about whether or not it’s a good idea to water the lawn. It consists of two pri-
mary pieces: the controller and a web server. An ATmega128 processor connected to the Internet through a WIZnet WIZ810MJ is the
controller that actually controls the pump and solenoids. I was able to offload all of the physical Ethernet packet handling to a separate
‘black-box,’ thereby allowing me to use the relatively simple and inexpensive microcontroller. Knowing that I had a good network controller
that, with just a few lines of code, would start responding to ping requests expedited the development process.”

— Zack Clobes

Web Camera
The versatile Web Camera system can take a picture at a resolution of 640 × 480 or 320 × 240, pan the
camera horizontally and vertically, and change its IP and gateway address to match a network. Photos
are taken with a C328 JPEG compression module, which serves as a JPEG-compressed still camera.
The host can send a snapshot command to capture a full-resolution, single-frame still picture. The pic-
ture is then compressed by the JPEG engine (OV528) and transferred to the host. After each photo is
divided into 64-byte segments, a WIZnet WIZ810 Ethernet module transmits the packets over the
Internet.

Minas Kalarakis
Greece
info@kalarakis.gr

HONORABLE MENTION

“My project is a Web Camera whose images can be accessed using the Internet, instant messaging, or a PC application. The project
involves a PC application that enables the user to access and control the camera. The user can rotate the camera vertically and hori-
zontally via the PC-based application. The heart of the Web camera is a Microchip dsPic30F4013 microcontroller, which puts the
photos in packets and uses the WIZ810MJ module to send them to the Internet. The competition was a great opportunity to use
the ready-to-use module with the W5100 chip on it.”

— Minas Kalarakis

Time Server
The well-designed Time Server keeps a master time and date clock that is synchronized to the U.S.
WWVB time-code signal. It exists on the Ethernet network and serves time and date information accord-
ing to the SNTP, DAYTIME, and TIME protocols. Client devices can connect to the system, request the
time/date, and synchronize their local clocks. Because the Time Server doesn’t rely on Internet servers, it
can be used in secure networks that aren’t connected to the Internet. A WIZnet W5100 provides the
interface to the Ethernet network. A Freescale MC9S08QG8 microcontroller is used to decode the time-
code pulse stream, update a real-time clock, and serve time/date information to clients on the Ethernet
network.

Steven Nickels
U.S.
ssea000@gmail.com “The Time Server is a fixed-function node on an Ethernet network that provides time and date information referenced from the NIST

WWVB time-code radio signal. Once I developed the interface code that set up a socket connection, using the W5100 was very simple. I
especially liked that I didn’t have to compile a huge Ethernet stack. The SPI interface was especially important in the Time Server design
since I wanted to use a microcontroller with a low pin count. Additionally, since the TCP/IP stack is embedded in the W5100, I don’t have to
worry about code integration issues, large flash and SRAM requirements, or license and royalty costs.”

— Steven Nickels

NIETO: An NCID and NTP Client
The NIETO is an innovative network caller ID and NTP client. Featuring a WIZnet W5100
and an Atmel ATmega644, the system uses TCP to attach to an NCID server to retrieve and
display caller ID information on an LCD. As an IP client, NIETO attaches to an NCID server
and retrieves caller ID data over the Internet. The most recent call is always displayed.

Thomas Glembocki
U.S.
tomgle@yahoo.com

“I built NIETO in order to have a standalone box on my LAN to retrieve caller ID info without having to use a PC. The WIZnet W5100 provides four full TCP/IP sockets so
that very little programming is needed to establish a TCP connection over Ethernet with a server. I was able to use the standard GCC C compiler WinAVR to open TCP sockets
and send and receive data without any knowledge of what was taking place under the hood. The W5100 took care of all the Ethernet framing stuff and the TCP acknowledges,
CRC checking and the like. It contains large enough buffers to handle TCP/IP frames without tying up precious CPU RAM space. In my case, all the CPU RAM was dedicated to
storing caller ID data instead.”

— Thomas Glembocki

To see these projects and more, visit www.circuitcellar.com/wiznet/.

winners.qxp 4/9/2008 11:44 AM Page 33

mailto:zack@custom-ds.com
mailto:info@kalarakis.gr
mailto:ssea000@gmail.com
mailto:tomgle@yahoo.com
http://www.circuitcellar.com/wiznet/

14 Issue 217 August 2008 CIRCUIT CELLAR® www.circuitcellar.com

that change frequently or need to be
adjusted on the fly. In applications such
as permanent installations or automated
applications, the programming doesn’t
need to change frequently, but the appli-
cations usually require the lighting con-
troller to be controlled from another sys-
tem instead of through physical controls.
For this reason, the DMX Portal does not
have a physical programming interface.
Instead it offers RS-232 and Ethernet
communication interfaces and two dif-
ferent protocols, which allow it to be
used in a variety of different applications.

The system has an effects engine to
automatically generate timed fades
with simple commands. It also allows
user-defined scenes to be saved and
recalled when a command or digital
trigger is received. These features
enable the DMX Portal to fit into a
variety of applications, ranging from a
simple virtual lighting board emulated
on a PC to a self-contained lighting
control unit in an embedded system.

To keep project costs down, I built the
DMX Portal around a Microchip Tech-
nology PIC18F4620 microcontroller and
a WIZnet W5100 Ethernet interface. The
complete system costs less than $50,
making it extremely cost-effective in
comparison to other DMX controllers.

DMX PROTOCOL
To understand the DMX Portal, it is

useful to first understand how DMX

The DMX Portal is a self-contained
lighting control unit that you can use
to control moving lights or special
effects equipped with a DMX interface
(see Photo 1). The project provides a
low-cost, flexible way to interface
embedded systems with DMX devices,
and to allow DMX control to be distrib-
uted over long distances using Ethernet.

Most programmable lighting is
designed for stage performances. Stand-
alone lighting boards are the most com-
mon playback controllers/programming
interfaces used in these applications.
The programming interface provided by
the lighting boards is implemented via
slider controls and buttons similar to
an audio mixer. This type of interface is
most appropriate for stage performances

works. At the highest level, DMX is
nothing more than a serial transmis-
sion of 8-bit values. Data is transmit-
ted at 250 kbps in frames that consist
of the following sections: BREAK,
MARK AFTER BREAK (MAB), START
CODE data slot, and up to 512 chan-
nel data slots (see Figure 1).

The term BREAK means a low state
where the voltage on the (+) DMX
data line is lower than the voltage on
the (–) DMX data line. The term
MARK means a high state where the (+)
line has a higher voltage than the (–) line.
The START CODE and channel data
slots each contain 11 bits, which are 4 µs
in length. The first bit is the start bit and
is always low. The next 8 bits are the
data portion of the slot, with the least
significant bit first. The final 2 bits are
stop bits and are always high. The
START CODE can have different values
for the 8 data bits, but it usually con-
tains a value of 0x00 to indicate that the
following data slots represent individ-
ual channel data. Delays may be added
between any of the data slots as long as
the data lines remain in the high
(MARK) state and the delay does not
exceed 1 s. The optional delay is useful
because it allows time for the processor
to attend to other tasks periodically dur-
ing DMX transmission. The only limit
on the delay is that the next frame
must be sent no more than 1.025 s after
the start of the previous frame. This

FEATURE ARTICLE by Matt Ernst

Ready to build your own DMX lighting controller? Matt’s design enables him to remotely
control up to 512 channels through an IP-based network or directly interface them to
embedded systems with a serial connection. It is perfect for distributed lighting systems
where low-cost Ethernet wiring is a better option than RS-485 wiring.

The DMX Portal
Obtain Lighting Control Via Ethernet

Photo 1—The DMX Portal is a compact lighting control
unit. It’s designed around a WIZnet 5100 Ethernet con-
troller and a Microchip Technology PIC18F4620. The
WIZnet development board is secured to the right side of
the PIC development board. The five-pin XLR connector
and RS-485 level converter are on the add-on board
behind the PIC development board.

THIRD PLACE CONTEST WINNER

2807015_Ernst.qxp 7/10/2008 1:36 PM Page 14

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2008 Circuit
Cellar Inc. All rights reserved.

requirement ensures that data on the
DMX line is always refreshed at a mini-
mum rate. Many programmable lights
are designed to go into a low-power
state if no DMX data is received with-
in a certain amount of time, effective-
ly building an automatic power switch
into the protocol.

The physical layer of DMX is a five-
wire interface using a five-pin XLR con-
nector. Pin 1 is Shield (ground), pin 2 is
Data (–), pin 3 is Data (+), pin 4 is
Optional Secondary Data (–), and pin 5 is
Optional Secondary Data (+). The DMX
specification requires the use of a five-
pin XLR connector. The connector pro-
vides primary and secondary RS-485 data
channels. The data lines (pins 2 and 3)
use the RS-485 signaling specification
also known as EIA-485. The secondary
data channel (pins 4 and 5) is almost
never used in practice and is the biggest
source of differences among vendors.

Prior to the DMX512-A specification,
vendors sometimes used a three-pin XLR
connector and did not include pins 4 and
5 at all. Three-pin XLR connectors are
commonly used for microphone connec-
tions and this practice allowed people
to accidentally connect DMX and audio
devices, potentially damaging equipment.

RS-485 also requires cable that has
120-Ω differential impedance. Standard
microphone cable does not have this
impedance, which can lead to poor signal
integrity and data errors. Other manufac-
turers sometimes used pins 4 and 5 to
deliver power, a practice that is also pro-
hibited by the DMX512-A specification.

RS-485 was
designed to be a
multidrop inter-
face that allows
multiple receivers
to be on a single
line. The
DMX512-A specifi-
cation allows up to
32 receivers on a
single line without
buffering the sig-
nal. Each receiver
may respond to
one or more of the
512 DMX chan-
nels that can be
transmitted on a
single line. Com-

mon examples of multichannel
receivers are dimmer packs with mul-
tiple AC outputs and moving lighting
that uses multiple channels to control
the intensity, x-axis, y-axis, and color
of the light. Because DMX often
involves long cable lengths and multiple
receivers along the length of the cable,
signal integrity is important to prevent
bit errors. Using the proper impedance
cable and terminating the end of the
cable with a matched resistor will elim-
inate most signal integrity problems.

ADVANTAGES OF THE DMX PORTAL
Earlier in this article, I described the

typical “lighting board” style of the
DMX controller. When using this type
of controller to create a light show,

the parameters of the show are typi-
cally entered into the controller’s
memory as “scenes.” A scene is basi-
cally a snapshot of the current state of
all the DMX channels in use. When
finished, the show consists of a large
number of these scenes, which can be
recalled in a timed sequence to gener-
ate changing lighting similar to flip-
book animation.

The aforementioned method works
well for some applications, but there
are situations where it has disadvan-
tages. One example is architectural light-
ing in a building such as a restaurant.
Restaurants typically have many rooms
and tend to keep the lights lower for din-
ner than they do for breakfast and lunch.
You may want to design a system that
uses DMX-controlled dimmers for each
room and automatically dims the lights
in each room at the start of dinner. You
may also want the ability to adjust the
lighting in each room separately to com-
pensate for the amount of light from
windows or for special events. In this
situation, scenes are a poor program-
ming method because the exact level
needed for each dimmer channel is not
always the same. A standard lighting
board would require you to have a scene
defined for each possible combination of
brightness in each room. Even if you
allow only five discrete brightness levels
per room and had four rooms, this would
result in 625 scenes to cover every possi-
ble combination. Because the DMX por-
tal gives you a way to programatically

www.circuitcellar.com CIRCUIT CELLAR® Issue 217 August 2008 15

Figure 1—The DMX protocol transmits data in frames that consist of an 88-µs
break, an 8-µs mark after break, and up to 513 data slots. The start code defines the
type of data contained in the start slots following it, which makes the DMX protocol
flexible enough to control different types of devices over a shared cable.

General-purpose
I/O

RS-485/XLR add-on board

MAX3082
RS-422/485

interface

Scene digital trigger
connector header

PIC18F4620
8-bit

Microprocessor

PIC Ethernet
development board

Configuration
EEPROM

8-MHz
RC oscillator

UART

SPI

WIZ810MJ
Evaluation board

256-KB serial
EEPROM

MAX202E
RS-232
Interface

DE-9
Connector

Five-pin XLR
DMX output

Figure 2—The DMX portal includes three boards. The PIC18F4620 microcontroller has more than enough power
to handle the functionality of the DMX features, command processing, and the RS-232 interface. The WIZnet evalu-
ation board offloads all of the processing requirements for an Ethernet interface and connects to the PIC18F4620
via the SPI port.

DMX frame (11.96 ms minimum*)

* Minimum of 22.668 ms if all 512 channel slots are sent

44 µs 44 µs 44 µs 44 µs

4 µs 4 µs 4 µs 4 µs 4 µs 4 µs 4 µs 4 µs 4 µs 4 µs 4 µs

Data slot (11 bits) (44 µs)

Start
bit

LSB
B0 B1 B2 B3 B4 B5 B6

MSB
B7

Stop
bit 1

Stop
bit 2

Break
(88 µs minimum)

MAB
(8 µs min)

MAB
(8 µs min)

Start
code

Ch 2
0 255

Ch 1
0 255

Ch 512
0 255

2807015_Ernst.qxp 7/10/2008 1:36 PM Page 15

http://www.circuitcellar.com

16 Issue 217 August 2008 CIRCUIT CELLAR® www.circuitcellar.com

control the level of each channel and
recall saved scenes, the task would be
much simpler. A scene could be defined
for the default levels of every room at
the start of each meal period. If levels
other than the defaults are required, the
commands in the DMX Portal control
protocols make it easy to modify the
levels of individual channels on the fly.
With this level of control, you can easily
implement a system that provides many
more manual brightness levels for each
room without programming a ridiculous
number of fixed scenes.

HARDWARE
As you can see in Photo 1, the DMX

Portal prototype consists of three boards.
Figure 2 shows how the boards are con-
nected. The main board is a simple PIC
development board, which contains
power supplies, an RS-232 interface IC,
and a 256-KB serial EEPROM. The
board also has a few LEDs and headers
for the PIC’s debug lines and the
remaining I/O pins (see Figure 3).

A PIC18F4620 microcontroller is the
core of the system. It is responsible for
maintaining the current state of all DMX

channels, generating the DMX output
stream, processing incoming commands,
and generating effects like fades. This
project uses many of the PIC18F4620’s
peripheral hardware features. The inter-
nal EEPROM is used to store user-
defined settings that are applied when
the system is turned on (such as whether
to enable DMX output, a value to initial-
ize all channels to, and IP settings for the
Ethernet interface). The PIC18F4620’s
serial communication hardware is used
to implement the RS-232 asynchronous
interface and SPI communication to the
external EEPROM and the W5100 Eth-
ernet controller.

The RS-485/XLR add-on board is a
simple PCB that contains an RS-485
interface IC to translate the 5-V CMOS
output of the PIC18F4620 to a differen-
tial output meeting the RS-485 fault-tol-
erance specifications (see Figure 4). This
board also contains a five-pin XLR con-
nector defined by the DMX512-A speci-
fication as the proper connector for
DMX interfaces and eight tactile
switches I used to debug the trigger
functionality of the DMX portal.

The final board is the WIZnet

WIZ810MJ evaluation board, which
contains the W5100 hard-wired TCP/IP
stack IC. The board handles all of the
low-level details of the UDP Ethernet
interface for the DMX Portal. It also
provides the passive components and
the RJ-45 connector required for the
Ethernet interface. Data is transferred to
the microcontroller through the SPI port
rather than the parallel interface, but this
could be easily changed if high through-
put via the Ethernet interface is required.

FIRMWARE
I wrote the firmware for this project

completely in assembly with
Microchip’s MPASM compiler. Even
though writing in assembly can be
more time consuming and make com-
plex algorithms more difficult to read,
I had two reasons for using this lan-
guage. The first was that I wanted full
control to optimize the algorithms as
much as possible for the PIC18F archi-
tecture and my specific application.
The second reason was that I wanted
this project to be usable by other peo-
ple as a basis for PIC or DMX projects.

Using assembly requires no licensed

Figure 3—The PIC development board uses a 40-pin PIC18F4620 microcontroller and pro-
vides 3.3- and 5-V power supplies. It can operate from an input voltage of 6.5 to 35 V and
provide connections for a Microchip ICD2.

2807015_Ernst.qxp 7/10/2008 1:36 PM Page 16

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 217 August 2008 17

next command or
refreshing the
DMX output.
Writing in assem-
bly was particu-
larly helpful here
because it was
straightforward
to analyze how
many CPU
cycles were
required for each
command to exe-

cute and optimize them as much as
possible.

Hardware timer interrupts are used
to trigger the execution of the DMX
refresh routines and provide timing

software compilers and facilitates a
better understanding of what is going
on at the hardware level. This under-
standing helps a lot when debugging
code and also helps you write efficient
code the first time. During the process
of writing the firmware for the DMX
portal, I developed a library of useful
macros and subroutines for math,
string, and utility operations. The
time put into writing and debugging
these code building blocks will help
reduce the development time of future
assembly-based projects and help
bridge the readability gap between
assembly and C.

Multitasking in this project is com-
pletely interrupt driven. When the
device first powers up, all hardware
peripherals and software variables are
initialized before interrupts are
enabled. The RS-232 and Ethernet
interfaces have dedicated interrupts
that call a process to collect the
received data into a circular buffer
within the PIC data memory. Once a
complete command is detected inside
the circular buffer, a blocking com-
mand processor routine is called that
validates the command and executes
the appropriate action. Because this
command processor routine is block-
ing, it is important that the com-
mands are executed efficiently so they
do not interfere with receiving the

cues for the automatic fade engine.
The DMX output refresh was
designed to be a blocking process like
the command processor. This simpli-
fies dealing with commands that
change the contents of the DMX
frame buffer. The DMX frame buffer
is a 512-byte section of the
PIC18F4620 data memory that stores
the current 8-bit values for each of
the 512 DMX channels. Because the
DMX protocol allows for delays
between each data slot, it would have
been possible to write the code so the
DMX refresh was not blocking. This
would have improved the system’s
ability to deal with large amounts of
incoming command data during
refreshes. But it would also have
required care in dealing with updating
the frame buffer in the middle of a
refresh.

Another reason the refresh was
made to be a blocking process was
that it effectively gave the highest pri-
ority to the DMX output. If one of the
command interfaces was flooded with
incoming data, it could have been

Figure 4—The DMX
expansion board contains
a standard DMX connec-
tor, a CMOS-to-RS-485
converter IC, and eight
push button switches to
debug the digital scene
trigger functionality.

2807015_Ernst.qxp 7/10/2008 1:36 PM Page 17

http://www.circuitcellar.com
http://www.keil.com
http://www.keil.com/arm
http://www.keil.com/c51
http://www.keil.com/c166

possible to starve the DMX
refresh process of execution
time. If this happened, and
the DMX process was not
blocking, the system
might not have met the
minimum DMX refresh
rate and some lights could
have gone into Auto Shut-
down mode. Different
applications are likely to
have differing require-
ments for priority given to
DMX output and com-
mand processing, but you
can modify the code to
suit your needs.

WORK WITH THE W5100
The W5100 was a good fit

for this project because
implementing the software
required for a simple
TCP/IP stack with assembly would
have been a time-consuming task. The
W5100 handled all of the details and
required me to write only a few sub-
routines to read from the device and
calculate offsets into the chip’s buffer
memory to find my data. Some of
these calculations required 16-bit
math, which is not natively supported
by the PIC18F family. Luckily, I had
already written a library of basic 16-bit
math functions for use with the com-
mand processor.

The firmware stores all of the con-
figuration parameters—such as the IP
address, gateway, subnet mask, and
MAC address—in the internal EEP-
ROM so they can be used to configure
the W5100 during power-up. These
parameters can be modified via the
ASCII command protocol and will be
automatically saved to the EEPROM
each time they are changed.

COMMAND INTERFACES
The DMX Portal provides Ethernet

and RS-232 interfaces so it can be
connected to a variety of systems. The
Ethernet interface is useful if the sys-
tem into which you want to integrate
DMX functionality has Ethernet con-
nectivity, or if it will be located a long
distance away from the DMX portal.
The RS-232 interface is useful for
connecting to embedded systems

because they frequently have serial
output capabilities. Plus, the RS-232
interface offers a reliable, low-cost
connectivity option with little soft-
ware overhead.

Each of the command interfaces
supports two different command pro-
tocols. The first protocol is ASCII
text-based and provides a large set of
easily readable commands to control
every aspect of the DMX portal. This
protocol is most useful if you want to
control the DMX Portal through a
standard terminal program. Because
the commands are text-based, more
processing overhead is required to
transmit and process commands using
this protocol.

The second protocol is a compact
binary code based on a protocol devel-
oped by the open-source USB DMX proj-
ect. (Refer to the Resources section of
this article.) This protocol reduces over-
head to a minimum and has all of the
commands required to control the DMX
output. It is useful if you have config-
ured the non-DMX parameters of the
device using the ASCII protocol and
want to make changes to the DMX
output as quickly as possible. A com-
mand can be sent that will switch
between the two protocols while the
device is running to allow flexibility
between available commands and
communication efficiency. Another

advantage is that the USB
DMX protocol allows the
DMX Portal to be controlled
by software that supports
the USB DMX protocol. I’ll
cover one such application,
named FreeStyler, in the
next section.

SOFTWARE INTERFACES
Because the DMX Portal

has many combinations of
communication interfaces
and protocols, there is no
ready-made application
that can easily interface
with it in all of the possi-
ble modes. I used the Lab-
VIEW graphical program-
ming language to build
custom interfaces that
could control the DMX
Portal via the RS-232 or

Ethernet connections using the
ASCII or fast binary protocols (see
Photos 2 and 3).

Programming with LabVIEW was
helpful because it has libraries for
communicating via a serial port or
TCP/IP. It also has many examples
that can be easily modified. The other
benefit is that LabVIEW enables you
to build a functional GUI with little
work. The code for the utility inter-
faces I wrote could easily be enhanced
to behave like the final user interface
of a project.

To demonstrate how to make a
final user application, I wrote a virtu-
al lighting board application based on
the same code I used for my utility
interfaces (see Photo 4). The virtual
interface mimics the user interface
provided by lighting boards by provid-
ing sliders that can be attached to
sets of DMX channels. Buttons for
other common features—such as tem-
porarily setting all lights to off, also
known as a blackout, or disabling the
DMX output to enable the lights to
go into Power Down mode—are also
provided.

Earlier, I mentioned that the fast bina-
ry protocol was based on the protocol of
the USB DMX project. A major reason
for this decision was that there is a
free lighting control program available
called FreeStyler that provides excellent

18 Issue 217 August 2008 CIRCUIT CELLAR® www.circuitcellar.com

Photo 2—Using LabVIEW, it is easy to create utilities that communicate over standard
PC I/O ports and have professional-looking graphical user interfaces. This utility allows
the DMX Portal to be accessed through the RS-232 interface using the binary protocol.

2807015_Ernst.qxp 7/10/2008 1:36 PM Page 18

http://www.circuitcellar.com

support for many commercial pro-
grammable lighting fixtures and
makes it easy to generate complex
lighting effects. (Refer to the Sources
section.) FreeStyler already supports
the USB DMX binary protocol, so by

www.circuitcellar.com CIRCUIT CELLAR® Issue 217 August 2008 19

allowing the DMX portal to support
the same commands, I effectively
received support for this application
with no extra work. The USB DMX
project uses an FTDI chip that appears
as a virtual COM port in Windows.

Photo 3—The code in LabVIEW is written graphically using a programming principle known as data flow. Each
block in the diagram represents a function that will execute once data has arrived on each of its inputs. Outputs of a
block are connected via wires to the inputs of other blocks or they are connected to control and indicator symbols,
which correspond to graphical items on the GUI called the front panel.

Photo 4—This application was written to demonstrate how a final user interface for the DMX Portal could be written
using LabVIEW. It provides features commonly found on a standard lighting control board, such as level sliders and
blackout controls.

2807015_Ernst.qxp 7/10/2008 1:36 PM Page 19

http://www.circuitcellar.com
http://www.hobbylab.us
http://www.imagecraft.com
http://www.eesensors.com

20 Issue 217 August 2008 CIRCUIT CELLAR® www.circuitcellar.com

All you need to do is put the DMX
Portal into Binary Protocol mode and
then point FreeStyler to the correct
COM port.

FUTURE DEVELOPMENTS
Like any project, there is always

room for improvement. I would like to
improve the DMX Portal’s RS-232
hardware buffer. The PIC18F4620 pro-
vides a 2-byte hardware buffer to help
give the processor time to process
incoming data if it can’t get to it

immediately. As I discussed in the
Firmware section, I chose to make
some processes block the execution of
other interrupt-driven processes to
deal with time-sensitive requirements
or race conditions involving modify-
ing memory in the middle of these
tasks.

There is a downside to this
approach. When the DMX output is
enabled, the processor is fully occu-
pied for 22.668 ms while a frame is
sent. Because the DMX output refresh

consists mostly of wait commands to
generate the proper data rate timing,
speeding up the processor would not
reduce the amount of dead time
where the processor could not handle
incoming data. Even at the slow data
rate of 9,600 bps, a single byte takes
only about 1 ms to transmit. So, it is
possible to send more than 2 bytes of
data over the RS-232 link before one
DMX frame refresh is completed. This
can result in data being lost and com-
mands that were sent not being
processed.

The best way to maintain a con-
stant DMX output refresh rate while
still being able to tolerate large
momentary bursts of command data is
to implement the serial interface with
a second small low-cost microcon-
troller. This would enable the data
memory of the second microcontroller
to act as a large command buffer. It
would also make the serial interface
as robust as the W5100 Ethernet inter-
face, which already contains a large
memory buffer.

Another approach would be to use
an external hardware UART for the
DMX output. This would eliminate
the need for the processor to sit in
wait loops to generate the correct data
rate. It would also enable the proces-
sor to handle incoming data in the
gaps between bytes. The downside to
this approach would be that the DMX
output refresh rate would become
dependent on the amount of traffic
received on the communication ports.
This may not be a problem, but it
would require a bit more care in
implementation because the DMX
standard requires a minimum refresh
rate. If too many commands are sent
during a frame refresh, this rate may
not be met.

For the prototype, I used a relatively
slow 8-MHz system clock because it
could be generated from the
PIC18F4620’s internal RC oscillator.
There is no reason why I can’t run the
PIC18F4620 faster with an external
oscillator. Doing so would help
improve the performance of some
tasks such as command processing.
Having a faster clock to reduce the
processing time would help make the
system run much smoother without

2807015_Ernst.qxp 7/10/2008 1:36 PM Page 20

http://www.circuitcellar.com
http://www.expresspcb.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 217 August 2008 21

SOURCES
MPLAB IDE and PIC18F4620 Micro-
controller
Microchip Technology, Inc.
www.microchip.com

W5100 Ethernet controller and
WIZ810MJ evaluation board
WIZnet, Inc.
www.wiznet.co.kr/en

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2008/217.

Matt Ernst (mbernst@gmail.com) is a
graduate of the University of Wiscon-
sin-Madison School of Engineering. He
has a strong interest in the automation
and control systems used in the enter-
tainment industries. Matt is a staff
analog hardware engineer at National
Instruments. He designs high-speed
test and measurement hardware.

RESOURCES
FreeStyler, http://users.pandora.be/
freestylerdmx/.

B. Suffolk, “USB DMX Project,”
www.usbdmx.com/protocol.html.

United States Institute for Theatre
Technology, Inc., “DMX512-A Specifi-
cation,” www.usitt.org.

costing too much.
One improvement that could be

made to the Ethernet interface would
be to change from the UDP protocol
to the TCP protocol. UDP has no
mechanisms to guarantee packets are
not lost. It also has a maximum pay-
load size that can be a problem with
some of my commands that generate
large amounts of response data. A
TCP-based link would automatically
try to resend dropped packets, reorder
packets that are received out of
sequence, and detect a communications
failure. TCP also behaves as a constant
datastream, so it would not be subject
to a maximum payload length like UDP.
The W5100 supports TCP. Thus, it
would not be difficult to make this
transition. I think it would greatly
improve the quality of the communi-
cation interface on the DMX Portal.

I also want to improve the data stor-
age space for user-defined scenes. For
simplicity, I chose to use a serial EEP-
ROM for my storage, but it offers only
limited space. An SD card would have
been a much better choice because it

offers a low-cost storage solution that
easily holds an entire show’s worth of
scene data. Because SD cards can be
accessed through a SPI just like the
EEPROM, supporting this feature
would require only adding code to
handle the FAT file system. An addi-
tional benefit to the SD card approach
would be that scene data could easily
be written or backed up to a PC with-
out actually being connected to the
DMX Portal. It is possible to write a
software interface that performs these
functions using the available commu-
nication interfaces, but it is not as
simple as just reading a file from an
SD card.I

2807015_Ernst.qxp 7/10/2008 1:36 PM Page 21

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2008/217
http://users.pandora.be/freestylerdmx/
http://www.usbdmx.com/protocol.html
http://www.usitt.org
http://www.microchip.com
http://www.wiznet.co.kr/en
mailto:mbernst@gmail.com
http://www.circuitcellar.com
http://www.circuitcellar.com/newsletter
http://www.rsappkits.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 218 September 2008 15

providers a way to distribute periodi-
cally updated material. Conveniently,
RSS uses XML, so the relevant data is
well-structured for processing by
clients.

To retrieve the news headlines, I
wrote a cut-down HTTP client and
XML parser. I wanted the device to
operate without any action by the
user, so I implemented a domain
name service (DNS) and dynamic host
configuration protocol (DHCP) client
in order to use dynamic IP addressing.
Every 15 min., the device renews its

When I first heard about WIZnet’s
iEthernet 2007 design contest, I was
really excited about all of the possibili-
ties an integrated Ethernet chip would
open up to smaller microcontroller-
based systems. I knew there were tons
of networking applications that I could
create (e.g., web servers, remote sensor
networks, and home automation/con-
trol systems). But many of the designs
that first came to mind had already
been done to death, and when it came
down to finding a new project, I strug-
gled a bit. Having missed the last few
Circuit Cellar contests, I knew I had to
get an entry done for this one.

At the time, I was messing around
with interfacing dot-matrix LED dis-
plays to microcontrollers. I showed a
friend how to make customized mes-
sages scroll across a display by pro-
gramming a computer a certain way.
(He wasn’t exactly a Circuit Cellar
reader.) He was really interested in the
stock market, so he thought it would
be nice to have a scrolling stock ticker
similar to those shown on some finan-
cial television programs. I thought it
was a really good idea, but rather than
scrolling stock information, I decided
to scroll up-to-date news headlines.

Luckily, there are many news organ-
izations that provide free news
updates via the Internet. Nearly all of
the major ones provide really simple
syndication (RSS) feeds for news head-
lines as well. RSS gives content

client IP, requests the IP of the BBC
News RSS server, parses the XML for
news headlines, and scrolls them
across the display (see Photo 1).

The system features a Microchip
Technology PIC18F2525, PIC18F2221,
and a WIZnet WIZ810MJ Ethernet
module. In this article, I’ll describe
how I used these building blocks to
design the news ticker.

SOME CHALLENGES
I wanted the design to be as simple

and inexpensive as possible. The WIZnet

FEATURE ARTICLE by James Blackwell

James no longer has to turn on a TV or computer to get news updates. His innovative design
retrieves news headlines from RSS feeds and constantly scrolls them across a dot-matrix LED
display. The system checks for updates every 15 minutes.

Content Collection and Display
Build an Internet-Connected News Ticker

Photo 1—Check out the LED news ticker in action. Actually, you can’t really see the full extent of the action. Still
pictures don’t show scrolling very well. Use your imagination!

SECOND PLACE CONTEST WINNER

2809014_Blackwell.qxp 8/11/2008 11:48 AM Page 15

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2008 Circuit
Cellar Inc. All rights reserved.

16 Issue 218 September 2008 CIRCUIT CELLAR® www.circuitcellar.com

buffering the incoming
XML data; but ultimate-
ly, I decided against
that. Without a buffer
large enough to store the
entire web page, I was
limited to using only
the integrated receive
buffers of the WIZnet
chip. Although the soft-
ware would be more
complicated, the need
for an additional exter-
nal component was
eliminated.

Controlling all of the
LEDs presented another
challenge. Nearly all
dot-matrix LED displays
are common-anode or
common-cathode. Each
row of the matrix is con-
nected to the anode or
cathode of every LED in
that row. The columns
of the matrix are con-
nected to the opposite
end of every LED in that

column. Each row is then sequential-
ly enabled while manipulating the
columns of the matrix in order to
illuminate the specified LEDs in that
row. This process is called “scan-
ning.” If the matrix is scanned at a
high enough frame rate, persistence

chip handles most of the network pro-
cessing, so a cheaper, less complex
microcontroller could be used for
controlling the system. Knowing that
these products have a limited
amount of internal RAM, I consid-
ered adding some external storage for

of vision will be maintained. The pur-
pose of scanning is to reduce the num-
ber of control pins required, along
with the amount of power needed to
illuminate the display.

Continuously scanning the display
takes a lot of processing time, so a
master/slave arrangement was used. In
this setup, the master tells the slaves
what image to draw while the slaves
draw the image. This allows a large
amount of I/O manipulation to be
offloaded to the slaves, leaving the
master free to do more important
things.

A side effect of matrix scanning is a
reduction in display brightness.
Because each row of the display is on
only once per frame refresh, and you
have eight rows in the frame, the aver-
age current through an LED will be
12.5% of its instantaneous current. If
the LEDs and their current-limiting
resistors are specified for 20 mA (a
pretty standard LED current), the aver-
age current through them will be only
2.5 mA due to the low duty cycle of
matrix scanning.

Fortunately, the LEDs are still
bright enough with the reduced cur-
rent. I actually halved the recommend-
ed LED current from 20 to 10 mA.
With the average current through each
LED equal to 1.25 mA, the display
was still easy to read in daylight.

A nice feature of LEDs is that they
can withstand pulses of current much
higher than their recommended aver-
age current. If the display is not
bright enough using the 20-mA recom-
mended average current, it can be
raised according to the specification of
the LEDs. For the LEDs in my dis-
plays, the maximum pulse current is
100 mA. With a 12.5% duty cycle, this
gives an average current of 12.5 mA
through each LED—still well within
the recommended average range.

Make sure to select an appropriate
current for your LEDs. There are 128
LEDs in each display, and I used
eight displays in this system for a
total of 1,024 LEDs. If 12.5 mA was
selected as the average current
through each LED, the maximum
average current draw for the entire
display would be 12.8 A! Using an
average LED current of 1.25 mA

Internet

PIC18F2221

Main board

8 × 8 LED Matrix

WIZ810MJ PIC18F2525

Slave board × 8

Figure 1—This is a block diagram of the system. On the main board, a
Microchip Technology PIC18F2525 communicates with a WIZnet
WIZ810MJ to access the Internet. The slave boards receive data from the
main board while updating their LED display.

Photo 2—This is the main board. Can a PCB get any simpler?

2809014_Blackwell.qxp 8/11/2008 11:48 AM Page 16

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 218 September 2008 17

reduces the total current required by
a factor of 10.

You’re now familiar with many of
the gotchas I encountered. Let’s
move on to the hardware behind the
project.

THE HARDWARE
As you can see in Figure 1, the

design consists of a main board and
eight slave boards that piggy-back to
bicolor dot-matrix LED displays. The
main board is responsible for handling
networking-related tasks, updating the
frame buffer for the display, and send-
ing each slave the current frame it
should be drawing. The slave boards
continually paint their frame buffers
to their respective LED matrix while
waiting for the main board to send
them updated display data.

Each LED matrix contains 64 pixels,
organized as an 8 × 8 square. Each
pixel is represented by a red and green
LED, for a total of 128 LEDs per
matrix. A maximum of eight charac-
ters can be fully displayed at one time.

The main board is fairly simple
(see Photo 2 and Figure 2). It features
a PIC18F2525 at 32 MHz, a

Figure 2—There’s not much to the main board. The Microchip PIC18F2525 and WIZnet WIZ810MJ are the only major components.

HMIDistributed
I/O

Industrial
Computing

Digital
I/O

Serial
I/O

We Listen. Think. And Create.We Listen. Think. And Create.

F CUS
On Success

 SeaLINK USB Serial Adapters Provide:
• 1, 2, 4, 8, and 16-Port Models
• RS-232, RS-422, and RS-485

Serial Interfaces
• Data Rates to 921.6K bps
• State Machine Architecture to

Reduce Host Processor Overhead
• Operation as Standard COM Ports

to the Host Computer
• Lifetime Warranty

SeaLINK USB serial
adapters are the fastest,

most reliable way to
connect peripherals to any
USB-equipped computer.

F
O

Reduce Host Proces
• Operation as Standa

to the Host Compute
• Lifetime Warranty

2809014_Blackwell.qxp 8/11/2008 11:48 AM Page 17

http://www.circuitcellar.com
http://www.sealevel.com

18 Issue 218 September 2008 CIRCUIT CELLAR® www.circuitcellar.com

high-side drivers for the common-
anode rows.

A 5-V, 2.5-A, regulated switching
power supply provides power to the
system. Even with the current reduc-
tion from matrix scanning, a fairly
large amount of current is required—
roughly 1.3 A with the display fully
illuminated. In reality, the device
draws only around half that because I

WIZ810MJ Ethernet module, power
supply circuitry, and headers for con-
necting the slave boards. The WIZnet
module houses a WIZnet W5100 inte-
grated Ethernet controller and an RJ-
45 jack with integrated magnetics.

The eight slave boards are also sim-
ple (see Photo 3 and Figure 3). Each
one uses a PIC18F2221 at 32 MHz, a
1.32″ 8 × 8 bicolor, common-anode
dot-matrix LED display, a pair of
Texas Instruments TPIC6C596 power
shift registers, and four Fairchild
Semiconductor FDC6312 dual-channel
P-FETs. Shift registers are used to fur-
ther reduce the number of I/O pins
required to interface to the matrices.
Each shift register is 8 bits wide, so
two are used to control the 16 LEDs
that make up the columns of each
matrix (one green, one red, eight of
each). They also provide a high-
power current sink for the LED cath-
odes. The P-FETs act as high-current,

don’t use the bicolor capability. There
are a lot of unlit pixels as well due to
the shapes of each letter and spaces
between words. Still, I have some wig-
gle room in case I ever decide to
increase the display brightness.

The microcontrollers and LED cir-
cuitry are powered by the 5-V rail pro-
vided by the regulated switching
power supply. A linear regulator on

Figure 3—Here are the slave boards in all of their glory. Most of the components are for interfacing to the LED matrix.

Photo 3a—Take a look at the slave boards. Soldering eight of these by hand took forever. b—This is a close-up of
how an LED matrix and a slave board snap together.

a) b)

2809014_Blackwell.qxp 8/11/2008 11:48 AM Page 18

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 218 September 2008 19

the main board provides the 3.3 V required
by the WIZnet module. The module
and the PIC18F2525 are 3.3-/5-V-toler-
ant, so level-shifting circuitry isn’t
required.

The master communicates with
the slaves via a SPI bus. Each slave
has its own chip-select line. The
bus’s data rate is kept at a minimum
due to the distance between the main
board and the slaves. A SPI bus is
also used to communicate with the
WIZnet module.

WIZnet MAKES IT EASY
Having to deal with implementing a

software TCP/IP stack with fairly lim-
ited resources is a pain, so a fully fea-
tured drop-in solution was attractive.
There was also the added bonus of
offloading a nontrivial amount of pro-
cessing to an external chip, leaving
the master to skip a lot of the grunt
work. The WIZnet chip greatly
reduced the complexity of the main
board’s firmware.

The WIZnet chip supports many
protocols, including the well-known
TCP and UDP among others. These
two protocols are used for all of the
networking services that the main
board implements (DHCP, DNS, and
HTTP). The W5100’s socket interface
enables connection to other nodes on
the network.

You probably read Fred Eady’s arti-
cle, “iEthernet Bootcamp: Get Start-
ed with the W5100” (Circuit Cellar
208, 2007). Fred explained the socket
interfaces better than I can, so refer
to his article if you want to delve
into the details of setting up the
W5100 registers correctly. Suffice it
to say, depending on the protocol
used, all that’s needed for a socket
connection are the IP addresses of
the client and host and the source
and destination port. Once these are
established, you can begin sending

and receiving data.

MAIN BOARD FIRMWARE
The firmware for the main board

was written in C using Microchip’s
C18 compiler and MPLAB IDE. Nearly
all 4 KB of RAM provided by the
PIC18F2525 is used. Less than half of
the 48 KB of program memory was
used, so some functionality can be
added.

The program itself is separated into
several different tasks and is entirely
interrupt driven. Short tasks are exe-
cuted in the interrupt, while long
tasks poll status flags and execute in
the main loop. The main board’s primary

tasks are the news update task, the
display task, and the “updating mes-
sage” task.

NEWS UPDATE TASK
The news update task is responsible

for DHCP leasing, DNS querying,
downloading news updates via HTTP,
and formatting them for display.
Three out of the four sockets are used
on the WIZnet module (one for each
of the previous services). The task is
called approximately every 15 min.
While it is running, it calls the
“updating message” task to display a
message while the headlines are
downloaded from BBC News.

Every time the task is run, a DHCP
lease is requested and a DNS query is
made to resolve the IP address of
newsrss.bbc.co.uk. Although caching
and lease times are provided from the
queries, these are ignored for the sake
of simplicity.

DHCP
DHCP is a convenient feature to

have on a device like this. It enables
the automatic retrieval of local net-
work information, including a free
client IP address, the subnet mask,
the gateway IP address, and the DNS
server IP address. All of these are
required to establish a connection on
the Internet. Without DHCP, this
information would have to be manu-
ally entered periodically because the
addresses are dynamic. I wanted the
device to operate without user inter-
action, so implementing a DHCP
client was required.

DHCP uses UDP to facilitate client
and server communication and is
implemented on its own socket (sock-
et #1). Figure 4 shows the process of
obtaining local network information
using DHCP.

The client first broadcasts a DHCP
Discover packet, which alerts DHCP

Listing 1—The description tag stores the news headlines you want to extract. Everything else can be ignored.

height="49"
url="http://newsimg.bbc.co.uk/media/images/44531000/jpg/_44531986_usflag66i_ap.jpg
"/></item> <item><title>Amnesty pressures IOC over
China</title><description>Amnesty International calls for condemnation of China's
handling of protests in Tibet.</description><link>http://news.bbc.co.uk/go/rss/-
/2/hi/uk_news/7325754.stm</link><guid

DHCP Start

Send
DHCP discover

DHCP Offer
received?

Send
DHCP request

DHCP ACK
received?

DHCP End

Figure 4—Packets are exchanged by the DHCP client
and server to obtain local network information. The
DHCP client will repeatedly request an IP until one is
leased by the server.

2809014_Blackwell.qxp 8/11/2008 11:48 AM Page 19

http://www.circuitcellar.com

20 Issue 218 September 2008 CIRCUIT CELLAR® www.circuitcellar.com

servers on the network. Multiple
DHCP servers may respond with a
DHCP Offer packet. This packet noti-
fies the client of an IP if one is avail-
able for lease. The client responds to
the first server that responds. The
client then sends a DHCP Request
packet to the first DHCP server
found, requesting the IP that was pre-
viously received in the DHCP Offer.
If the server accepts the request, a
DHCP ACK packet is sent. This con-
firms with the client that the IP is
now assigned. If an IP is not served,
the process will repeat until a client
IP is obtained.

DNS
DNS is another useful feature to

have. Instead of having to remember
the IP address of every web site you
visit, DNS allows familiar hostnames
(e.g., www.circuitcellar.com) to be
used to connect to remote hosts.
Many host IP addresses are dynamic,
so DNS is another must-have (unless
you want to update the IP manually,
and that’s no fun).

DNS uses UDP for communication
between servers and clients. It is
implemented on its own socket (sock-
et #2). The process is straightforward
and has only two steps. The client
sends a DNS query packet to the DNS
server that was identified through
DHCP. The query packet contains the
requested domain name
(newsrss.bbc.co.uk in this case) in the
form of questions. Multiple questions,
and hence domain names, can be sent,
but you need to look up only one
domain name in this case. Following
the question section is the answer sec-
tion. This area will be used by the
DNS server’s reply, but it is unused in
queries.

The DNS server sends a DNS
response after receiving a query. It is
noteworthy that the format for queries
and responses is identical. The DNS
response contains the original ques-
tion sent by the client along with an
answer. Multiple answers can be sent
even if only one question is asked.
Some of the answers may be redirect-
ed domain names, which can safely be
ignored. The IP address of the server is
the only data you’re looking for. The

DNS client parses the answer section
until it finds the required IP address of
the host.

HTTP
HTTP is used to obtain the XML

data from the BBC RSS news feed. It
uses TCP and is implemented on its
own socket (socket #0). HTTP sup-
ports several actions that enable data
transfers from the host to the client,
or vice versa. In this case, the only
action you’re concerned with is GET.
There’s nothing complicated here.
The GET action retrieves a web page.
The only data needed for the GET
action is the URL of the web page
you want. Once a GET action is
received by the host, it starts trans-
mitting the requested page to the
client.

The XML data must be parsed to
extract the desired news headlines.
Fortunately, XML provides a nicely
structured set of data by enabling
providers to define their own ele-
ments. Elements are basically data
grouped around “< >” tags. The BBC
RSS feed provides the news headlines
in elements named description. The
tags will appear as <description> in
the XML. Listing 1 shows a sample of
a description element and the news
headline it contains.

The XML data is parsed while it is
still in the WIZnet chip’s receive
buffers. The parser steps through the
buffer, looking for the beginning of a
description tag. Once one is found, it
stores the following text until the end
of the description tag is found
(</description> in this case). The
news headlines are stored in the
PIC18F2525’s internal memory and
most of it is used for that purpose.
About 20 headlines can be stored,
each with a maximum of 145 charac-
ters. BBC headlines are generally less
than 120 characters. If a headline is
longer than 145 characters, additional
characters are discarded.

Once all of the headlines are stored,
they must be parsed again. XML uses
special sequences of characters to rep-
resent quotation marks, apostrophes,
and ampersands (", ',
and &, respectively). The parser
must find them and convert them to

the correct characters.

DISPLAY TASK
The display task updates the slaves

with display data and maintains the
frame buffer. It is called approximate-
ly every 16 ms.

Compared to the news update task,
the display task is relatively simple. It
shifts all of the data in the frame
buffer left one pixel every time it is
run. When the frame buffer has been
shifted eight pixels, it loads the next
character into the buffer. Once the
last headline is displayed, the task
wraps around to the first headline.

The frame buffer holds pixel data for
10 frames. The display itself shows
only eight of those frames (one frame
for each LED matrix). An extra frame
is on both ends of the buffer and
they’re there to facilitate scrolling.
Each frame in the buffer stores 8 bytes
of information. Each byte represents a
column of the LED matrix. Each bit
then determines whether that pixel is
on or off. Sixty-four bits are used for
each frame (8 bytes × 8 bits), with
each bit corresponding to one pixel on
the LED matrix.

To convert news headlines to pixels,
an 8 × 8 font table is used. The table
maps ASCII characters to pixel data
for the LED displays. Eight bytes are
used for each ASCII character. Like
the frame buffer, each byte represents
a column and each bit represents a
pixel.

SLAVE BOARD FIRMWARE
The firmware for the slave boards

was written in C using Microchip’s
C18 compiler and MPLAB IDE. Few
resources are used on the slaves because
their responsibilities are limited.

Compared to the main board, the
slave firmware is pretty dumb. The
program sits in a loop, continually
refreshing the display, while waiting
for the SPI interrupt to trigger. The
SPI interrupt routine simply loads the
data received from the master into a
frame buffer.

The infinite loop continuously
refreshes the LED matrix. Only one
row is illuminated at a time, and rows
are illuminated sequentially. Each
byte in the 64-byte frame buffer holds

2809014_Blackwell.qxp 8/11/2008 11:48 AM Page 20

http://www.circuitcellar.com
http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 218 September 2008 21

the color information for a single
pixel. The data corresponds to the
binary representation of which LEDs
should be illuminated. For each row, a
16-bit number is generated holding the
bit pattern for the LED columns. For
example, the binary bit pattern
B“11111111 11111111” would turn on
every LED. The bit pattern
B“01010101 01010101” would turn on
every red LED. The pattern
B“00000000 00000000” would turn off
all LEDs, and so on. When the entire
frame has been refreshed, the process
begins again.

HAVE FUN
This project was a success. It is still

sitting on my workbench, so I can
read news headlines when I am not
near a computer.

You learn a lot by doing a project
like this because there’s so much func-
tionality involved. There’s also a lot of
room for new features that I didn’t
have time to implement. One that I
will eventually integrate is the ability
to upload a customized message
through a web page that the main
board will host. I may even add the
ability to scroll stock information in
the future. I

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2008/218.

RESOURCES
F. Eady, “iEthernet Bootcamp: Get
Started with the W5100,” Circuit Cel-
lar 208, 2007.

WIZnet, Inc., “Application Note –
DHCP,” 2008, www.wiznet.co.kr/rg4
_board/view.php?&bbs_code=en_pds&
ss%5bst%5d=1&ss%5bsc%5d=1&kw=

James Blackwell (j.blackwell@azosoft.
com) graduated from Cleveland State
University in 2007 with a Bachelor’s
degree in Electrical Engineering. He
currently works as a design engineer
for Delta Systems in Streetsboro,
Ohio. When James isn’t perfecting his
perpetual motion machine, he enjoys
playing bass guitar and drums.

www.fairchildsemi.com

MPLAB C18 Compiler, PIC18F2221
microcontroller, and PIC18F2525
microcontroller
Microchip Technology, Inc.
www.microchip.com

TPIC6C596 Shift register
Texas Instruments, Inc.
www.ti.com

WIZ810MJ Ethernet module
WIZnet, Inc.
www.wiznet.co.kr/en

SOURCES
FDC6312 MOSFET
Fairchild Semiconductor Corp.

dhcp&bd_num=15832.

———, “Application Note – DNS,” 2008,
www.wiznet.co.kr/rg4_board/view.php
?&bbs_code=en_pds&ss%5bst%5d=1
&ss%5bsc%5d=1&kw=dns&bd_num=
15833.

———, “W5100 Datasheet,” 2008.

2809014_Blackwell.qxp 8/12/2008 12:49 PM Page 21

mailto:j.blackwell@azosoft.com
mailto:j.blackwell@azosoft.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2008/218
http://www.fairchildsemi.com
http://www.microchip.com
http://www.ti.com
http://www.wiznet.co.kr/en
http://www.circuitcellar.com
http://www.cadsoftusa.com

50 Issue 219 October 2008 CIRCUIT CELLAR® www.circuitcellar.com

automated the entire process with a
novel design. We call our design the
Travel WIZard. It is an embedded server

The bone-chilling wind and week-
ly ice storms that come with winter
in central Illinois often leave us won-
dering where we can go to get away
from the cold. Far away. Destinations
on our short list this year include
Jeju (South Korea), Buenos Aires,
Acapulco, and Honolulu. As engi-
neers, we didn’t want to make a ran-
dom decision with no logic behind it.
We wanted to have a process. We
wanted to travel to one of these far-
off destinations, but how would we
decide where to go and when?

As cost-conscious engineers, we
wanted to locate the best airfare
prices and travel dates. A few search-
es on one of the many available
online travel search engines revealed
that airfare can fluctuate significant-
ly depending on the time of year.
Airfare even fluctuates with the days
of the week. We knew the only way
for us to make a proper decision
would be to collect about a year’s
worth of airfare data for our desired
destination and then inspect the data
for the cheapest time of year to trav-
el. But manually executing a year’s
worth of airfare searches to a desired
destination would have taken a long
time. In fact, we would have spent
the entire winter sitting in front of
our computers, sipping hot choco-
late, and running searches. But we
had basketball to play and beaches to
lounge on. Thus, we did what any
engineers repulsed by the thought of
endless repetitive work would do: we

application featuring a WIZnet W5100
hard-wired TCP/IP Ethernet controller
and a Microchip Technology Explorer 16

FEATURE ARTICLE by Matt Pennell and Aaron Thomas

This well-designed embedded server application enables you to find airfare deals on the ’Net.
The WIZnet W5100-based system uses Kayak, an online travel search engine, to search for
flights. The data is then graphed to show you the best time of year to travel.

Automated Data Mining
Build an Embedded Server Application

Photo 1a—The WIZnet WIZ810MJ network module plugs into a pair of female pin headers soldered to a 120-pin card edge
connector board. The connector board plugs into the Explorer 16 development board. b—This is the top of the module.

a) b)

Photo 2—The Travel WIZard’s server interacts with Kayak’s search engine to gather a year of useful airfare information.

HONORABLE MENTION

2810016_Pennell.qxp 9/8/2008 1:24 PM Page 50

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2008 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 219 October 2008 51

communicating with the device a
snap.

The only problem was figuring out
how to physically connect the
WIZ810MJ to the Explorer 16 board
(see Figure 2). Additional schematics,
figures, and files are available at
www.circuitcellar.com/wiznet/winners/
001130.html.

After considering some kind of
breadboard-fly-wire-solder combina-
tion, we decided there was no better
time than the present to design our
first PCB. Although it was intimidat-
ing at first, the PCB layout process
turned out to be an enjoyable experi-
ence. We used the freeware version
of CadSoft Computer’s Eagle layout
editor to design the board. The free-
ware version has some limitations
with respect to board size, number of
layers, and circuit complexity, but it
was more than adequate for our pur-
poses. Advanced Circuits fabricated
the board. It took about two weeks
to lay out the board, and then an
additional week to receive prototype
boards. The completed assembly is
shown in Photo 1. The WIZ810MJ
plugs into two pin
headers, which are sol-
dered to the adapter
board. The adapter board
plugs into the 120-pin
card edge connector on
the Explorer 16.

We included both
W5100 bus interface
options in our layout to
maximize flexibility. We
use the
PIC24FJ128GA010’s gen-
eral-purpose I/O pin RF1
to select between the
SPI and parallel bus
interfaces via the
WIZ810MJ’s SPI enable
control line. At build
time, a preprocessor def-
inition selects between
the SPI bus driver and
the parallel bus driver,
so only the necessary
code is included in the
build.

The PIC24FJ128GA010
has a PMP peripheral
specifically designed to

development board (see Photo 1).
To use the Travel WIZard, simply

enter your search criteria (e.g., depar-
ture airport, destination airport, and
trip length) on the Travel WIZard
web site (embedded in EEPROM on
the Explorer 16). When you click the
button to start your search, the
embedded server interacts with the
Kayak flight search engine
(www.kayak.com) to acquire one
year’s worth of airfare data (see
Photo 2). After the data is acquired,
you can retrieve the results in a
comma-separated value format via
FTP. The resulting data can be easily
graphed to reveal seasonal trends in
ticket prices. Photo 3 is a screenshot
of the results from a Chicago-to-Hon-
olulu flight search.

HARDWARE
We used a Microchip Explorer 16

development board populated with a
PIC24FJ128GA010 microcontroller as
the basis for the project (see Figure 1).
The Explorer 16 brings out many of
the microcontroller’s pins to a 120-pin
card edge connector, including two
SPI bus interfaces and the PIC24’s
parallel bus interface, the parallel
master port (PMP). We acquired a
WIZnet WIZ810MJ network module
to handle our Ethernet interface. The
WIZ810MJ is an excellent choice for
quick Ethernet prototyping because
it comes as a plug-in module with
pin headers and it includes a Mag-
Jack and supporting circuitry for the
W5100. It also brings out the
W5100’s SPI and parallel bus inter-
faces to the pin headers, making

interface with parallel bus-enabled
devices such as the W5100. The PMP
is convenient because it includes
special hardware to handle chip
selects, read/write lines, and wait
states. However, its many pins are
multiplexed with various other
peripherals of the PIC24FJ128GA010,
including a second SPI module,
which is used to interface with the
EEPROM that stores our embedded
web page. We didn’t want to lose the
ability to serve a web page from our
board just because we switched to
the parallel bus, so each time our
W5100 parallel bus driver software
functions are called, the PMP is
enabled, data is transferred, and then
the PMP is disabled. When the PMP
is disabled, the associated pins revert
to the function they had been previ-
ously assigned. In this case, that
means the SPI module pins go back
to SPI functionality. Enabling the
PMP only when we need to access
the W5100 incurs a slight run-time
penalty because we have to execute
more than the necessary number of
instructions every time we access

Photo 3—Data retrieved from the Travel WIZard is in
comma-separated values (CVS) format. Flight search
results retrieved via FTP are graphed to reveal sea-
sonal trends in ticket prices.

Figure 1—This block diagram shows the Microchip Explorer 16 devel-
opment board populated with a PIC24 microcontroller at the heart of
the system. You can connect to the system via HTTP or FTP to begin a
search session or retrieve search results. Once search criteria have
been entered, the Explorer 16 automatically interacts with the Kayak
flight search engine to retrieve airfare search results.

HTTP Client
(Firefox, IE, etc.)

FTP Client

Internet gateway

W5100
Ethernet
controller

EEPROM
(Web page)

PIC24 MCU

DHCP, FTP,
HTTP, DNS,
and Sockets

Explorer 16

Remote flight
search engine

(Kayak)

2810016_Pennell.qxp 9/8/2008 1:24 PM Page 51

http://www.circuitcellar.com/wiznet/winners/001130.html
http://www.kayak.com
http://www.circuitcellar.com

52 Issue 219 October 2008 CIRCUIT CELLAR® www.circuitcellar.com

the device. However, it enables us to
maximize the PIC24FJ128GA010’s
available pin functions.

TCP/IP STACK
Microchip provides a free TCP/IP

software stack designed to interface
with its ENC28J60 Ethernet con-
troller. The stack is a modular imple-
mentation of the five-layer TCP/IP
model. ENC28J60 driver routines are
at the lowest level of the stack. On
top of the hardware drivers are the
network layer ARP and IP protocols,
followed by the transport layer TCP
and UDP protocols, and finally the
application layer protocols such as
HTTP, FTP, and dynamic host config-
uration protocol (DHCP). In a layered
software environment, the rule is
that each layer can depend on only
the functions in the same layer or
lower. That means functions in the
network layer should not be calling

functions from the higher transport
layer. Layering software also means
that data and implementation details
can be encapsulated within a layer.
The advantage is that implementa-
tion details may change in a given
layer; but as long as the functionality
stays the same, the upper layers will
never be the wiser. Understanding
the layered structure of the stack is
important because it is the mecha-
nism that enabled us to replace the
software stack with the W5100’s
stack, which implements everything
from the transport layer on down in
hardware.

Let’s clarify all of this abstraction
with a specific example. Listing 1 is
a code snippet from Microchip’s
HTTP server routine. The logic flow
is not too informative when taken
out of context in this snippet, but it
is useful to notice that the routine is
relying on transport layer functions—

such as TCPDisconnect, TCPGetArray,
and TCPDiscard—to do its work.
Listing 2 reveals the internal details
of the software stack TCPDiscard
function, which is used to clear a
socket’s receive RAM. Compare that
to Listing 3, which shows the same
TCPDiscard function. This time it
is implemented for the hardware
stack. Notice that the function pro-
totype is the same, as is the overall
functionality (the socket’s receive
RAM is cleared). Under the hood,
however, the implementation details
have changed drastically. Neverthe-
less, from the perspective of the
HTTP server routine, nothing has
changed. It can call the same func-
tion and obtain the same result.

For another example, refer to Listing 3
for the hardware stack that we relied
on for our W5100 driver routines
W5100WriteReg and W5100ReadWord,
which we used to access registers on
the Ethernet controller. Doing so
enabled us to swap out a SPI bus
driver with a parallel bus driver
without having to make a single
change to any layer-accessing W5100
registers. This incredible technique
enabled us to switch from using the
SPI bus interface to using the parallel
bus interface in a single evening. It
was amazing considering it took sev-
eral weeks to get the entire applica-
tion functioning properly with the
SPI bus.

The Microchip stack implements
numerous application-layer protocols.
Because of the modular implementa-
tion, we were able to rip out the guts
of the lower layers of the stack and
replace them with W5100 socket
driver routines. We were careful to
keep the functionality and external
interface of the transport and net-
work layers exactly the same. No
modifications were necessary to the
application layer software. This pow-
erful technique enabled us to reuse
all of Microchip’s application proto-
cols. At one time or another, we ran
HTTP (server and client), DHCP,
TELNET, FTP (server and client),
DNS, and NBNS application proto-
cols using the W5100. As we tested
each protocol one by one, we had to
learn enough about it to be able to

Figure 2—The two jumpers are located on the WIZ810MJ development board. On the left, you can see the
connections from the WIZ810MJ 28-pin connectors to PIC24 processor pins. On the right, you can see the
Explorer 16 board’s 120-pin card edge connector. These pins go directly to the PIC24 processor.

2810016_Pennell.qxp 9/8/2008 1:24 PM Page 52

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 219 October 2008 53

We implemented a custom TCP
client software package for retrieving
airfare information from a remote
server. The client software uses the
transport layer driver interface to
communicate over Ethernet. The
package is a group of related files
that enable the flight search TCP
client to be easily integrated into the
top-level application. The center-
piece of the package is the flight

know whether or not it was working
correctly. Doing so enabled us to
acquire a mountain of knowledge on
the inner-workings of the Internet
during our testing.

FLIGHT SEARCH PACKAGE
After mastering the low-level

details of Internet communication, it
was time to move on to the task at
hand: automating airfare data mining.

search task, which actually imple-
ments the API for communicating
with the remote flight search server.

The flight search task waits for a
software flag to be set, indicating
that search parameters have been
entered and a search may begin. The
flag is set when a button is clicked
on our board’s web page. We added
code to the Microchip HTTP server
to kick off a flight search session.
When the flag is set, the next time
the flight search task runs, it con-
nects to the remote flight search
server Kayak.com using DNS to
resolve Kayak’s IP address. After the
IP address of Kayak’s server was
resolved, we configured a W5100
socket to be used in TCP client
mode. The TCP client mode socket
establishes the connection with
Kayak, and then uses that connec-
tion to acquire airfare data.

The first step toward interacting
with Kayak is to acquire a search
session ID, which is needed to sub-
mit search queries. The Kayak server
uses an HTTP interface so all com-
munication is done using TCP. Our
client software calls the transport
layer TCP functions to transmit to
and receive data from Kayak.

Kayak returns all data in XML for-
mat. For us, that meant writing a
couple of simple parser functions in
our client to retrieve data from with-
in Kayak’s XML tags. We learned that
the equivalent of a function call is
made over the Internet by using a
web address as the function name fol-
lowed by CGI-formatted function
arguments. Furthermore, the data
transmitted over the Internet is sim-
ply ASCII text. For example, to
acquire a session ID from Kayak, we
make the “function call” by writing
“api.kayak.com/k/ident/apisession?toke
n= cRGMxxxxxxxxhT7kSEZE2Dw” to
the W5100’s transmit RAM and
flushing our TCP socket. The
“token” argument is actually a
developer key, which must be
acquired from Kayak in order to use
the API. Kayak responds to the func-
tion call with an XML document.
One of the elements within the XML
document is the session ID. We parse
through the socket’s receive RAM to

Listing 1—Microchip Technology’s application layer implementation of HTTP relies on transport layer func-
tions to handle the details of TCP. The implementation details of TCP are hidden from the application layer.

static void HTTPProcess(HTTP_HANDLE h)
{
…

if(w == 0xFFFFu)
{

if(TCPGetRxFIFOFree(ph->socket) == 0)
{

// Request is too big, we can't support it.
TCPDisconnect(ph->socket);

}
break;

}

lbContinue = TRUE;
if(w > sizeof(httpData)-1)

w = sizeof(httpData)-1;

// Populate httpData array with w bytes
TCPGetArray(ph->socket, httpData, w);
httpData[w] = '\0';

// Discard remaining data from this socket
TCPDiscard(ph->socket);

…
}

Listing 2—This code snippet reveals the implementation details of the TCPDiscard function from
Microchip’s software stack.

void TCPDiscard(TCP_SOCKET hTCP)
{

TCB_STUB *ps;

if(TCPIsGetReady(hTCP))
{

ps = &TCBStubs[hTCP];
LoadTCB(hTCP);

// Delete all data in the RX buffer
ps->rxTail = ps->rxHead;

// Send a Window update message
SendTCP(hTCP, ACK);

SaveTCB(hTCP);
}

}

2810016_Pennell.qxp 9/8/2008 1:24 PM Page 53

http://www.circuitcellar.com

about how the Internet really func-
tions under the hood. This project
taught us a lot about the underlying
details of Internet communication.

If you’re planning to put your cur-
rent embedded project online, we
recommend obtaining a network pro-
tocol analyzer. It will do wonders for
your debugging capabilities. We used
an excellent open-source application
called Wireshark (formerly Ethereal).
Wireshark captures Ethernet packets
in real time from your PC’s wireless
or LAN cards. Packet contents are

54 Issue 219 October 2008 CIRCUIT CELLAR® www.circuitcellar.com

locate the session ID. We then store
it safely away into processor RAM
and clear the receive RAM buffer.

The session ID, after being
acquired once, is used with all ensu-
ing flight search queries. The session
ID expires after 30 min. of inactivity
(no search queries). To manage the
load on its servers, Kayak restricts
the frequency of search queries.
Developers are limited to about 41
queries per hour. Beyond that, Kayak
responds with a message indicating
that you have run out of search
quota and you need to wait (a mes-
sage we received frequently during
development).

We submit a search query using
data supplied from the user entered
into our web page via HTTP. We
then wait 90 s before polling for
results. After retrieving the results
from Kayak’s XML document, we
wait another 90 s, update our search
dates to a week later, and run anoth-
er query. The process continues until
52 searches—covering one year from
the initial search date—have been
performed. At our current quota
limit of 41 queries per hour, it takes
about 156 minutes to complete a
search run.

We save the top result (the cheap-
est result from each flight search
query). The result is parsed out of
Kayak’s XML data in the W5100
socket’s receive RAM. A snippet of
an XML reply from Kayak is shown
in Listing 4. This is the actual data
that the W5100 buffers into its
receive RAM. From this, we parse
out the airline and the price (in bold)
and store them into an array in
microcontroller RAM along with our
calculated date.

During a flight search run, all four
sockets on the W5100 are active
simultaneously. We have one socket
in TCP Server mode listening to
TCP port 80 for HTTP connections.
Another TCP server socket is listen-
ing on TCP port 21 for FTP connec-
tions. A third socket is configured
for UDP to listen for NetBIOS name
service requests. The fourth socket
does double duty. It manages our
DHCP lease, and it is used in TCP
Client mode to connect to Kayak and

retrieve flight search results. We can
use a single socket to manage DHCP
and connect to Kayak because, in
both cases, the socket does not need
to stay connected all of the time.

FINDINGS & IMPROVEMENTS
We learned a lot about the Internet

as we worked on this project. Sure,
we were already familiar with terms
such as “MAC address,” “DHCP”,
“gateway server,” and “client appli-
cation,” and we knew enough to get
by. But we didn’t know too much

Listing 3—This code snippet illustrates how implementation details of the TCPDiscard function were
changed to support the W5100’s hardware stack. The interface and functionality remain the same, so no
changes are required to higher level software. With this new implementation, the function relies on lower-level
driver routines to communicate with the W5100.

void TCPDiscard(TCP_SOCKET hTCP)
{

WORD ReceiveDataLength, ReadPointer;

if((ReceiveDataLength = TCPIsGetReady(hTCP)))
{
/* Retrieve the current read pointer */
ReadPointer = W5100ReadWord(Sn_RX_RD0(hTCP));

/* Increment by the size of available data */
ReadPointer += ReceiveDataLength;
W5100WriteReg(SnRXRD0(hTCP),((ReadPointer&0xFF00)>>8));
W5100WriteReg((SnRXRD0(hTCP)+1),(ReadPointer & 0x00FF));

/* Delete all data in the RX buffer */
W5100WriteReg(Sn_CR(hTCP),W5100_SOCKET_RECV);

}
}

Listing 4—The Kayak flight search API returns results in XML format. Key off of the tag names to parse out
results of interest such as airfare price and the airline offering the trip.

<?xml version="1.0"?>
<searchresult>

<searchinstance></searchinstance>
<searchid>s_c7Lu3a6QgVzrppeNtQ</searchid>
<count>15</count>
<morepending>true</morepending>
<trips>

<trip>
<price url="/book/flight?code=2-

zEGArPtH5_L$r14jZSJ1.s_c7Lu3a6QgVzrppeNtQ.19-
ZGnLUYLfGuVsthbFkgeW.F.AA.20880.0&_sid_=19-ZGnLUYLfGuVsthbFkgeW"
currency="USD">209</price>

<legs>
<leg>
<airline>AA</airline>
<airline_display>American Airlines</airline_display>
<orig>ORD</orig>
<dest>MIA</dest>
<depart>2008/01/17 20:10</depart>
<arrive>2008/01/18 00:05</arrive>

2810016_Pennell.qxp 9/8/2008 1:24 PM Page 54

http://www.circuitcellar.com

SOURCES
EAGLE Light Edition
CadSoft Computer, Inc.
www.cadsoftusa.com

Wireshark Network analyzer
Gerald Combs
www.wireshark.org

ENC28J60 Ethernet controller,
Explorer 16 development board, and
PIC24FJ128GA010 microcontroller
Microchip Technology, Inc.
www.microchip.com

WIZ810MJ Network module and
W5100 Ethernet controller
WIZnet, Inc.
www.wiznet.co.kr/en

Aaron Thomas (thomaal@gmail.com)
is an engineer for Caterpillar’s Elec-
tronics & Connected Worksite Divi-
sion. He specializes in FPGA devel-
opment for electronic control mod-
ules. Aaron earned a B.S. in computer
engineering from the University of
Toledo in Ohio. His technical inter-
ests include computer design, pro-
gramming, and automation using
embedded systems. In his spare time,
Aaron enjoys traveling, sports, and
video games.

Matt Pennell (mgpennell@gmail.com)
is an embedded software engineer for
Caterpillar’s Electronics & Connected
Worksite Division. He specializes in
hardware drivers, TPU microcode,
and eTPU microcode for engine con-
trol units. Matt earned a B.S.E.E. at
the University of Illinois at Urbana-
Champaign. His technical interests
involve designing hardware and soft-
ware for real-time embedded sys-
tems. Outside of work, Matt enjoys
weight lifting and sports.

displayed in a user-friendly, easy-to-
read format. Depending on the pack-
et’s protocol, the contents are broken
out byte-by-byte according to the dif-
ferent fields contained in the packet.
The program also has numerous fil-
tering options to limit the number of
captured packets to only what you
are interested in. Wireshark was
essential to the development of our
project.

PLANNING AHEAD
We have used the Travel WIZard to

acquire airfare data to destinations
all over the world. It is interesting to
observe seasonal trends in ticket
prices to different locations. Howev-
er, the application has plenty of
room for improvement. The once-
per-week sample rate is rather
sparse, allowing opportunities for
price variation that we could miss if
we happen to sample on the wrong
day. We plan to implement a more
dense mechanism for storing results
so we can pack a greater number of
results into the same amount of

Editor’s note: To learn more about
this project, you can review the
schematics, photos, diagrams, and

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2008/219.

www.circuitcellar.comCIRCUIT CELLAR®56 Issue 219 October 2008

RAM. (Currently, we store in ASCII
format.)

We also want to be able to view
the search progress from the embed-
ded web page. Google offers a graph-
ing API (Google Chart), in much the
same way that Kayak offers an API,
which can be used to graph data.
Using the Google Chart API, we
could graph the flight search results
as they come in, right on the embed-
ded web page.

Many web sites offer easy-to-use
APIs just like Kayak. Using the
W5100 and the Internet application
layer protocols, the number of appli-
cations is limitless. We are anxious
to add more automated packages to
the Travel WIZard to make it an
even more productive machine.
Doing so should enable us to spend
more time on the beach while the
system does the dirty work for us. I

additional files posted at www.circuit
cellar.com/wiznet/winners/001130.html.

2810016_Pennell.qxp 9/8/2008 1:24 PM Page 56

http://www.circuitcellar.com/wiznet/winners/001130.html
mailto:mgpennell@gmail.com
mailto:thomaal@gmail.com
http://www.cadsoftusa.com
http://www.wireshark.org
http://www.microchip.com
http://www.wiznet.co.kr/en
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2008/219
http://www.circuitcellar.com
http://www.cubloc.com

44 Issue 220 November 2008 CIRCUIT CELLAR® www.circuitcellar.com

Ethernet network, they may need to
be time synchronized. You wouldn’t
want data from two data collection
devices to have significantly different
timestamps, and you especially
wouldn’t expect to see data from the
future.

My Time Server design provides a
reference time and date for an Ether-

net network (see
Photo 1). It’s synchro-
nized to the WWVB
time signal so you can
have separate physical
networks in different
locations around the
country that will be
synchronized to the
same time and date.
You can use it in
secure Ethernet net-
works where connec-
tion to the Internet is
not allowed, restrict-
ed, or unavailable.
Because it’s inexpen-
sive, it can be used in
the home to keep
your Ethernet-enabled
irrigation controller,
security system, and
weather station all
working from the
same time reference.

Back in the 1980s, characters in tel-
evision shows like The A-Team
always counted on a well-executed
plan of explosions and traps set to go
off at just the right time. You would
often see Hannibal synchronizing his
watch, although the others seemed to
make things up as they went along. If
you have a “team” of devices on your

In an industrial Ethernet network, the
design becomes another node on the
network helping to keep multiple
process controllers synchronized and
data timestamps accurate.

Figure 1 shows the project’s three
main parts. The time code receiver
demodulates the WWVB signal into a
pattern of pulses that indicate the
time and date. A Freescale Semicon-
ductor MC9S08QG8 microcontroller
decodes the pulse pattern to get the
time and date, maintains a local real-
time clock, and manages the high-
level Ethernet protocols for serving
the time and date. A WIZnet W5100
controller handles the interface to the
Ethernet. It can manage Ethernet data
transfer up to the TCP/IP level, so the
design is simple.

RECEIVING THE TIME CODE
The WWVB is a radio station man-

aged by the National Institute of Stan-
dards and Technology (NIST). Don’t
bother trying to tune to it on your AM
or FM radio dial because the frequency
is 60 kHz and the content is about as
exciting as the daily hog futures
report. But it’s one of the most popu-
lar radio stations in the United States
because millions of devices are
receiving its broadcast to set the time
and date in home alarm clocks, school

FEATURE ARTICLE by Steven Nickels

Coordinate your Ethernet applications with Steven’s Time Server. The system keeps a master
time and date clock that is synchronized to the U.S. WWVB time code signal. It connects to an
Ethernet network and sends time and date information according to the SNTP, DAYTIME, and
TIME protocols. Now, no matter their locations, your devices can connect to the system,
request the time and date, and synchronize their local clocks.

Time Server Design

Photo 1—Using hardware modules provided by the manufacturers of the three
main components greatly accelerated the project’s development. The WIZnet
WIZ810MJ module, Freescale Semiconductor DEMO9S08QG8, and C-MAX Time
Solutions CMMR-6 are wired according to the main schematic. Power is provided
by a 3.3-V bench supply.

Synchronize with the WWVB Time Code SignalHONORABLE MENTION

2811015_Nickels.qxp 10/9/2008 11:43 AM Page 44

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2008 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 220 November 2008 45

next bit indicates “seconds = 1,” and
so on.

When a number is part of the infor-
mation, such as the minutes value,
the bits are arranged using binary
coded decimal (BCD). There are flags
and values that indicate daylight sav-
ings time, leap year, leap second
adjustment, and correction offset to
Coordinated Universal Time (UTC).
Position markers occur at various
places in the frame, as I mentioned
earlier. There is a position marker at
the start of the frame and another at
the end. When two consecutive posi-
tion markers (end of previous frame
and start of current frame) are detect-
ed, the start of frame has been found.
For more information, refer to the
NIST’s web site.

To demodulate the WWVB signal,
the server uses a C-MAX Time Solu-
tions CME6005 time code receiver.
The antenna and receiver IC chosen
for the server are specific for the U.S.
WWVB signal; however, C-MAX offers

and government clocks, and even
wristwatches.

The time and date information is
encoded into the broadcast by reduc-
ing the power of the carrier frequency
for a specific time in a 1-s period. For
a binary 0, the power is reduced for
0.2 s. For a binary 1, the power is
reduced for 0.5 s. There is a special
indicator called the “position marker,”
which is created by reducing the
power for 0.8 s. The position marker is
used to indicate the start of the frame
of data. There are various markers
within the frame at defined positions
so that the device decoding the stream
can verify that it is synchronized.

A frame contains 60 bits, where a
bit is a 1, 0, or position marker.
Because each bit has a 1-s period, it
takes 60 s (1 min.) to send the frame.
Figure 2 shows a sample frame. You
might think “seconds” information is
not in the frame, but it is. The first bit
is a position marker. The start of the
bit also indicates “seconds = 0.” The

parts for other frequencies, as well as a
multifrequency solution. I purchased
the C-MAX CMMR-6 receiver module
(antenna included) from Digi-Key for
approximately $10.

The CME6005’s output is a signal
that represents the WWVB time code
signal, but at a level that is suitable
for interfacing to a microcontroller or
perhaps an application-specific inte-
grated circuit (ASIC). The microcon-
troller, with its input capture feature,
detects a negative edge and measures
how long the signal remains low. Per
the WWVB signal, if it remains low for
0.2 s, a 0 bit is decoded. If it remains
low for 0.5 s, a 1 bit is decoded. If the
signal is low for 0.8 s, a position mark-
er is decoded.

After power is applied, it may take
up to 2 min. before the project will
have a time and date set into its local
clock. The worst case would be if
power is applied and the first bit of the
time code it sees is actually the second
bit of a frame. In that case, you would

Figure 1—The server has only three main components: a C-MAX Time Solutions WWVB time code receiver, a Freescale MC9S08QG8 microcontroller, and a WIZnet W5100
Ethernet interface.

Time code
pulse signal SPI

Microcontroller

DEMO9S08QG8
(Freescale MC9S08QG8)

development board

Ethernet
interface

(WIZnet W5100)

Time code receiver
(C-MAX Time Solutions CMMR-6-60)

Client
device

Client
device

Ethernet
network

Figure 2—The time code signal consists of a frame of 60 bits with a 1-s period. The year, day, hour, minute, and other informational flags are encoded in the frame.

Minutes = 37

(011 0111)

Hours = 8

(00 1000)

Days = 139

(01 0011 1001)

UTC Correction

–0.7

Year = 08

(0000 1000)

*Daylight

savings

P0PrP5P4P3P2

Frame

P1POPr

*Leap year

*Leap second

May 16, 2008 8:37:00

(with UTC correction: May 16, 2008 8:36:59.3)

*See “NIST Time Frequency Services”

document for more information

2811015_Nickels.qxp 10/9/2008 11:43 AM Page 45

http://www.circuitcellar.com

46 Issue 220 November 2008 CIRCUIT CELLAR® www.circuitcellar.com

have to wait for the rest of the partial
frame to complete and then wait for
the next full frame to be decoded.

When a full frame of 60 bits has
been received, the microcontroller’s
firmware checks to ensure that all
seven position markers are set. Then
it parses through the bits to decode
the years, day, hour, and minute to
compute a value that represents the
number of seconds since January 1,
1970 0:0:0. For some additional debug
assistance, a flag is set that will
cause a date and time string to be
sent out of the microcontroller’s
UART.

SERVING TIME (THE GOOD WAY)
The design uses the MC9S08QG8

microcontroller to decode the time
code signal, maintain a local real-time
clock, and run the design’s Ethernet
protocols. While the MC9S08QG8’s
built-in real-time clock feature is handy,
you could easily swap in your favorite
microcontroller. I had Freescale’s
DEMO9S08QG8 development board
handy. All it needed was a few resis-
tors, capacitors, and a 32.768-kHz
crystal added to the unpopulated area
of the board that is specifically
designed for these components. For
firmware development, I used the free
version of Freescale’s CodeWarrior
development studio.

Listing 1 is a high-level view of the
firmware. (The full source code is
posted on the Circuit Cellar FTP
site.) The “main” function starts off
by setting up the time code decoder
and the interface with the WIZnet
W5100, then the “forever” loop con-
tinuously checks to see if any Ether-
net client devices are requesting the
time and date. The server supports
three high-level protocols for serving
the time and date: Simple Network
Time Protocol (SNTP), DAYTIME,
and TIME.

SNTP is implemented according to
request for comment (RFC) 1361. A
network client makes a connection to
port 123 of the server and sends a mes-
sage using UDP. The server responds
with a similar message that includes
the time and date information.

DAYTIME and TIME protocols are
even simpler. The DAYTIME protocol

is used when a client makes a TCP
connection on port 13. A string with
the following format is sent to the
client:

<Weekday name>, <Month name>
dd, yyyy hh:mm:ss-UTC

If a TCP connection on port 37 is
made, the TIME protocol server sends
a 32-bit number representing the num-
ber of seconds since January 1, 1900 to
the client.

The project must always be able to
serve the time and date, even when
RF interference prevents the WWVB
signal from being received. Therefore,
a local real-time clock is maintained
by incrementing an integer variable
that represents the number of sec-
onds since January 1, 1970. The
MC9S08QG8 supports a real-time
interrupt feature that is set to fire an
interrupt every second based on an
external 32.768-kHz reference crystal.
When a client device makes a request,
the time and date is formatted accord-
ing to the local real-time clock. When
the interference clears and a full-time
code frame is received, the local clock
is updated with the new time and date

information.
Let me discuss one last item con-

cerning Ethernet time servers. The
Network Time Protocol (NTP) is a
popular protocol that this project does
not support. The firmware is signifi-
cantly more complicated because it
adjusts for latencies that are the result
of the Ethernet data transfer. The NTP
is used in networks that require pre-
cise timing and where the reference
clock is not dependent on the RF
reception from the WWVB radio sta-
tion, but rather directly from a cesium
clock.

SIMPLE ETHERNET
The CME6005 makes receiving the

WWVB time code signal simple by
combining all of the discrete demodu-
lation hardware into a single chip.
The microcontroller makes the
firmware simple because the SPI, real-
time clock, and input capture features
are all integrated into the hardware.
And, last but not least, the WIZnet
W5100 makes the Ethernet interface
simple because it manages all of the
Ethernet protocols right up to the
TCP/IP level.

The W5100 has both a parallel

Listing 1—This pseudocode shows a high-level view of the server’s firmware. After the hardware is initialized,
the forever loop continuously checks to see if a client is requesting the time and date.

//Setup:
Initialize MCU registers (set up real-time interrupt)
Initialize the WIZnet W5100

Set each Tx and Rx buffer for 2K size
Set Gateway address (hardcoded)
Set Subnet mask
Set MAC address (hardcoded)
Set IP address (hardcoded static IP)

Turn on MCU’s input capture feature
Open the sockets for the three servers

//“Forever” Loop:
//SNTP Server (UDP, port 123)
If SNTP message received,

Read the message into a local buffer
Update the time and date fields
Send the message to the client

//DAYTIME Server (TCP, port 13)
If client is connected,

Format time and date string.
Send time and date string to client
Reset the connection

//TIME Server (TCP, port 37)
If client is connected,

Send the 32-bit time value to the client
Reset the connection

2811015_Nickels.qxp 10/9/2008 11:43 AM Page 46

http://www.circuitcellar.com

48 Issue 220 November 2008 CIRCUIT CELLAR® www.circuitcellar.com

interface bus and a SPI. I used the SPI
because the server’s data throughput
requirements are low. The
MC9S08QG8 microcontroller includes
a SPI master as one of its built-in
peripherals, so writing and reading
bytes to and from the W5100 is as
simple as writing and reading a regis-
ter. Each SPI transaction involves
sending 4 bytes: a write or read com-
mand, the MSB of the register address,
the LSB of the register address, and
the byte to write to the register (or 0,
if reading). When reading, the final
byte written is merely used as a
dummy byte so that the SPI clock
causes the W5100 to place the con-
tents of its register on the MISO line.
The MC9S08QG8’s SPI data register is
then read to get the byte.

The W5100 contains multiple regis-
ters that control its configuration and
access to the incoming and outgoing
data buffers. The first set of registers
is called the “common registers.”
They are used to set up the gateway
address, subnet address, IP address,
MAC address, and several configuration

Listing 2—This code shows how to read the W5100’s Socket 0 Rx buffer. The W5100’s registers must be used to
locate where in the buffer new data can be read. Then, after reading the data, the registers must be updated so
the buffer location pointer will be ready for the next read operation.

int nb, addr, wizptr, i, numbytes = 0;

nb = (WIZNET_rdwrByte(WIZNET_READ,
WIZNET_Sn_RX_RSR0(0) + 0, 0) << 8);

nb += WIZNET_rdwrByte(WIZNET_READ,
WIZNET_Sn_RX_RSR0(0) + 1, 0);

//Get location of data
addr = (WIZNET_rdwrByte(WIZNET_READ,

WIZNET_Sn_RX_RD0(0) + 0, 0) << 8);
addr += WIZNET_rdwrByte(WIZNET_READ,

WIZNET_Sn_RX_RD0(0) + 1, 0);
wizptr = addr & 0x07FF; //2K - 1 = 0x800 - 1
wizptr += 0x6000; //2K size
for(i = 0; i < nb; i++)
{

if(numbytes < 80)//prevent overrun of local buf
{
buf[numbytes++] = (char)WIZNET_rdwrByte(WIZNET_READ, wizptr, 0);

}
++wizptr;
//It's a circular buffer, so roll at the top.
if(wizptr == 0x6800) //2K size
{
wizptr = 0x6000;

}
}
addr += i;
//Store pointer (only lower 16-bits)
WIZNET_rdwrByte(WIZNET_WRITE, WIZNET_Sn_RX_RD0(0) + 0,

(unsigned char)(addr >> 8));
WIZNET_rdwrByte(WIZNET_WRITE, WIZNET_Sn_RX_RD0(0) + 1,

(unsigned char)(addr & 0xFF));
//Reset flags
WIZNET_rdwrByte(WIZNET_WRITE, WIZNET_Sn_IR(0), Sn_IR_RECV);
WIZNET_rdwrByte(WIZNET_WRITE, WIZNET_Sn_CR(0), Sn_CR_RECV);

2811015_Nickels.qxp 10/9/2008 11:43 AM Page 48

http://www.circuitcellar.com
http://www.solderbynumbers.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 220 November 2008 49

network. A finished product would
need to reserve a block of MAC
addresses from the IEEE to guarantee
that it has a globally unique MAC
address for whatever network it is
installed in.

The W5100 supports four sockets.
Think of it like an office phone with
four lines. Up to four people can call
and you can answer them, service
their calls, or place them on hold and
service them as needed. When a con-
versation is over, the connection is
closed. Each socket has a set of regis-
ters that is used to set up the connec-
tion. The design uses only three of the
four sockets, one for each of the three
servers supported. Instead of a physi-
cal “line” (per the office phone analo-
gy) data from the Ethernet is routed to
a socket based on the socket’s “port”
identification number. To get all of
the data transferred back and forth,
the server and the client (the device
calling into the system) must use the
same language or, in Ethernet terms,
protocol. We are using the user data-
gram protocol (UDP) and transmission

items that control how the Ethernet
interface is managed. In the server’s
firmware, these registers are set with

hard-coded values to keep things simple.
The MAC address is set with random
values that are unique to my Ethernet

Figure 3—The design’s hardware was assembled using modules available from the manufacturer of each of the
three main components of the device. Take a look at how the C-MAX CMMR-6, Freescale DEMO9S08QG8, and
WIZnet WIZ810MJ are wired.

2811015_Nickels.qxp 10/9/2008 11:43 AM Page 49

http://www.circuitcellar.com
http://www.elprotronic.com
mailto:freebook@geisttek.com

50 Issue 220 November 2008 CIRCUIT CELLAR® www.circuitcellar.com

control protocol (TCP), which are fully
managed by the W5100.

While the W5100 manages the trans-
fer of data with the client, you need to
further define what time and date
information should be transferred. The
servers use protocols defined in request
for comment (RFC) documents that are
managed at www.rfc-editor.org. I
briefly covered these protocols in the
previous section.

When you know what data will be
transferred, you need to get the WIZ-
net W5100 to send and receive it. Each
socket has registers that are used for
reading bytes from an incoming data
buffer and registers for writing bytes
to an outgoing data buffer. While you
could just reference the W5100
datasheet and other examples from the
WIZnet web site to see how to use the
registers, sometimes it’s difficult to
pick up the nuances of the interface.
Listing 2 is a sample of the code I used
to read the bytes from socket 0’s
incoming data buffer.

For testing, I created a Java applica-
tion that runs on a Windows PC with

NetBeans6 development software. I
specifically wanted to borrow the
parts of the code that act as the client
side of the protocols so I could con-
firm that my servers are compatible
with implementations made by other
people. For the SNTP client, I credit
Adam Buckley with his contributions
to the NTP Public Services Project.
And for the TIME client, I referred to
Java Network Programming by
Elliotte Rusty Harold.

I’ll now share a couple of frustrating
experiences. This way you can pre-
vent them from happening to you. In
my network setup, I had the project, a
PC running a time client software
application, and a PC running Ethere-
al to monitor network data transfer,
all connected to an Ethernet switch
device. I wasn’t seeing the proper data
packets going back and forth between
the project and the PC running the
time application. After spending several
hours trying to debug my code that
drives the WIZnet W5100, I focused
on my network setup. An Ethernet
switch associates an IP address with

the devices plugged into its RJ-45
hardware ports, and it routes data
packets to only the appropriate
device. After replacing the Ethernet
switch with an Ethernet hub, I was
able to monitor the data packets using
the PC running Ethereal (a hub sends
all data packets to all devices). I also
had a problem when I changed to a
new static IP address in the design.
The Ethernet switch device still had
the old IP address associated with the
hardware port. So, after several hours
of head scratching, I power cycled the
Ethernet switch so it would learn the
IP address. This issue was also fixed
when I started using the Ethernet
hub.

MODULAR HARDWARE
I always try to set up a first-level

prototype using hardware modules,
development boards, or evaluation
boards offered by the manufacturer. I
am more of a firmware engineer than
a hardware engineer, so I like getting
something up and running first to
demonstrate feasibility.

2811015_Nickels.qxp 10/9/2008 11:43 AM Page 50

http://www.rfc-editor.org
http://www.circuitcellar.com
http://www.apcircuits.com
http://www.rsappkits.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 220 November 2008 51

SOURCES
CME6005 Time code receiver and
CMMR-6 receiver module
C-MAX Time Solutions
www.c-max-time.com

DEMO9S08QG8 Development board
and MC9S08QG8 microcontroller
Freescale Semiconductor, Inc.
www.freescale.com

NetBeans6 IDE
NetBeans Community
www.netbeans.org

W5100 Ethernet Controller and
WIZ810MJ module
WIZnet, Inc.
www.wiznet.co.kr

Steven Nickels has a B.S. in electronic
engineering technology from Min-
nesota State University at Mankato.
He works as a senior software engi-
neer for Medtronic Navigation in
Louisville, CO. Steven’s main area
of interest is firmware development,
but he picks up a soldering iron
every now and then. Several of his
interesting projects are posted at
http://ssea000.googlepages.com.

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2008/220.

RESOURCES
A. Buckley, “Section 13.3 Java SNTP
Client,” The NTP Public Services Pro-
ject, http://support.ntp.org/bin/view/
Support/JavaSntpClient.

C-MAX Time Solutions, “CME6005
Datasheet,” 2007.

———, “CMMR-6 Receiver Module
Datasheet,” 2007.

Freescale Semiconductor, Inc., “Appli-
cation Module Student Learning Kit
Users Guide Featuring the Freescale
MC9S08QG8,” DEMO9S08QG8, 2006.

———, “HCS08 Family Reference
Manual,” Rev. 2, 2007.

———, “MC9S08QG8 MC9S08QG4
Data Sheet,” Rev. 4, 2008.

E. R. Harold, Java Network Program-
ming, Third edition, O’Reilly Media,
Inc., Sebastopol, CA, 2004.

M. Lombardi, “NIST Time and Fre-
quency Services,” NIST Special Publi-
cation 432, National Institute of Stan-
dards and Technology, 2002, http://tf.
nist.gov/general/pdf/1383.pdf.

RFC Editor, “RFC 1361,” “RFC 867,”
and “RFC 868,” www.rfc-editor.org/
rfc.html.

WIZnet, Inc., “W5100 Datasheet,”
Version 1.1.6, 2008.

———, “WIZ810MJ Datasheet,”
Version 1.1, 2007.

Figure 3 shows the server. Photo 1
shows the modules wired together.
The CMMR-6 is a module (antenna
included) for the CME6005. All that is
required is power, ground, and a line
from the time code signal output to
the timer input capture pin of the
microcontroller. I observed that mov-
ing the CMMR-6 several inches away
from the other electronics decreased
the RF interference while receiving
the time code signal. Also, the time
code signal would not be received at
all if the fluorescent lamp on my
bench magnifier lamp was on (even
though I live only 50 miles from the
WWVB transmitter in Fort Collins,
CO).

The DEMO9S08QG8 is a demon-
stration board for the MC9S08QG8
microcontroller. It includes the
Freescale Background Debug mode
(BDM) for quick programming and
debugging. I use the UART port to
send out the time and date whenever
the time code signal is received and
decoded correctly. A simple connection
to one of the LEDs becomes a heart-
beat indicator. The DEMO9S08QG8
includes unpopulated pads for the
32.768-kHz external reference clock
and support components. These com-
ponents were easily stuffed so that a
local real-time clock feature could be
supported.

I used the WIZ810MJ module for
the W5100. It includes the required
crystal and Ethernet RJ-45 jack with
built-in magnetics. A SPI is used
between the microcontroller and the
W5100. This keeps the amount of
wiring down to just a few digital sig-
nal lines plus a few for power and
ground. The WIZ810MJ uses 2-mm
headers, so I found compatible recep-
tacles, soldered wires to the pins per
the schematic, and terminated the
other end with pin sockets that can be
inserted on the 0.1″ header of the
DEMO9S08QG8. A bench instrument
set for 3.3 V powers this first-level
prototype.

FINISHED DESIGN
A finished hardware design could

easily be realized with a PCB measur-
ing about 3 square inches. Consider
keeping the C-MAX time code receiver

chip and antenna on a separate board
and connected through a 4″ to 6″ cable
so that it can be positioned for the
best reception. With a plastic box, a
wall transformer, and a 3.3-V power
circuit, the cost should stay less than
$100.

To take the project to the next
level, add some robustness to the
firmware. The time code data does not
contain a checksum or CRC, so make
sure at least three time code frames
are received where the “minutes”
value is one higher than the last
before the local real-time clock gets
changed. The project’s firmware could
also be enhanced using all the regular
tricks: enable the watchdog, error
check the data, blink the heartbeat
LED differently for errors, and more. I
recommend that you periodically read
one of the W5100 registers during
times of few client requests just to
make sure the Ethernet interface is
still active.

A few of the settings for the Ether-
net interface are hard-coded in the
firmware. You’ll need your own MAC
address, and you must set up your
own static IP address appropriate for
your network. I gained some experi-
ence creating code to run DHCP client
functions while I was working on a
different project—which I named the
Internet Weather Display—so I know
porting it to the project’s firmware
wouldn’t be too difficult. WIZnet’s
web site provides several application
notes on the topic of implementing a
DHCP client. I

2811015_Nickels.qxp 10/9/2008 11:43 AM Page 51

http://support.ntp.org/bin/view/Support/JavaSntpClient
http://tf.nist.gov/general/pdf/1383.pdf
http://www.rfc-editor.org/rfc.html
http://www.c-max-time.com
http://www.freescale.com
http://www.netbeans.org
http://www.wiznet.co.kr
http://ssea000.googlepages.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2008/220
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 31

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

Precision irrigation control is now a reality.
Thomas’s irrigation timer with advanced
planning (ITAP) is a truly novel irrigation con-
trol system. The easy-to-use system, which
directs user interaction into a standar d web
browser, pr ovides useful information such
as watering schedules and zone activity.

Networked Timing
Build a Timer With Advanced Planning Tools

E

F
EA

TU
RE

ARTICLE
by Thomas Bereiter

lectronics are supposed to simplify our lives, but
all too often, the reverse is tr ue. While research-

ing irrigation timers, I was str uck by how the evolution
from an electromechanical design to an electronic
design had actually made the device less usable. Early
irrigation timers were based on the simple rotar y motor
design still popular in plug-in appliance timers. A geared

motor slowly turned a wheel with on/off
pins. If you wanted water at 6 A.M. in zone
2, you simply pushed in the pins for zone 2
and 6 A.M. The wheels and pins also ser ved
as crude analog gauges. A glance at the
wheel would give you a pretty good idea of
when things would next tur n on and for
how long.

In the electronic age, the wheels and pins
are gone. They have been replaced by a
tiny LCD and a small keypad. The e lec-
tronics have added significant new capabil-
ities, but at the cost of requiring signifi-
cant data entry with a tiny keypad. The
visual feedback about what you’ve pro-
grammed is also gone. To ensure that you
have not accidentally programmed a 4-h
flood, you need to page through identical
screens, taking note of each setting.

As you can see in Photo 1, I designed

Photo 1—This is the completed circuit board. The WIZnet WIZ810MJ is the red board with
the RJ-45 connector. A solenoid valve connected to a manifold is to the left of the circuit
board.

2903018_Bereiter.qxp 2/5/2009 1:10 PM Page 31

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted by permission. For subscription information, call (860) 875-2199, or www.circuitcellar.com. Entire contents copyright ©2009 Circuit Cellar Inc. All rights reserved.

32 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

an Irrigation Timer with Advanced Planning capability
(ITAP). The challenge was to incorporate moder n func-
tionality, yet keep the design as simple to use as the old

electromechanical design. Because the biggest problem
was entering and displaying large amounts of data, I
selected a web browser for the user inter face. I consid-
ered various USB-based ways of connecting to a browser ,
but they invariably required some type of installation on
a host PC. Around that time, I saw the WIZnet iEther net
Design contest 2007 announcement and decided to build
my timer design around the WIZnet WIZ810MJ network
module.

A potential design trap in a network-enabled device is
the temptation to do too much with the network. An
irrigation timer should be a simple device. It is, after all,
just a timer and some solenoid valves. The network
interface is present in the design because it is the best
way to connect to a web browser . I have always been
drawn to simple, low-cost designs, so I used the network
interface to save money by eliminating an LCD and key-
board. Others might use the network inter face as an
excuse to jam in seldom-used features and boost the end
product’s price. Once I star ted building a web browser
interface, I realized that this was a good oppor tunity to
show that web technologies, which are nor mally associ-
ated with large enterprise deployments, can also be used
effectively on micro devices.

ITAP DESIGN
The design philosophy was to not consider the IT AP as

a networked or web-enabled device, but rather to use the

Figure 1—This shows the interaction between the browser pages, the hardware, and
the physical zone valves.

Hardware — model and control

Low-voltage wiring

Valve manifold

Browser — view

Network

“What if”
calendar report

Schedule
and

zone table

WIZnet
network
module

Webserver
data model

RTC and control

Solenoid
driver

Today
live view

2903018_Bereiter.qxp 2/5/2009 1:10 PM Page 32

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.apcircuits.com

34 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

network as a better serial line. Con-
ceptually, the ITAP has two boxes.
Box one is a headless control unit
that mounts in the garden and is
hard-wired to zone solenoids. It also
has an internal calendar and timer
that run the watering schedule. Box

two is a fancy LCD and keyboard
that plugs into box one whenever a
change of schedule is required. Box
two, of course, is really a laptop
with a web browser.

The hardware box represents the
headless control unit (see Figure 1).

A microcontroller maintains a data
model in EEPROM that is used by the
timer-control firmware to determine
when to turn on and turn off sole-
noid water valves. A WIZ810MJ net-
work module is used by the web
server firmware to accept requests

Figure 2—Connectors H1 and H2 are for the WIZ810MJ module. In SPI mode, few of the WIZ810MJ’s pins need to be connected.

2903018_Bereiter.qxp 2/5/2009 1:11 PM Page 34

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.calao-systems.com

www.circuitcellar.com • CIRCUIT CELLAR® 35

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

the ATmega168 largely because of
its 16 KB of flash memor y and
because it is easily available in a
DIP package, simplifying prototyp-
ing. Timer 2 is used with an exter-
nal 32-kHz crystal in real-time clock
mode. The SPI master controls the
WIZ810MJ. Other than a handful of
I/O lines, none of the microcon-
troller’s other features are used.
Although it seems like a shame to
use so few features, it would be
pointless to complicate the design.

The WIZ810MJ is a network mod-
ule that takes care of most of the
complexity of adding TCP/IP net-
working to a design. In SPI mode,
only a handful of the 56 pins are
needed. The rest can be left as no
connects. The version of the module
that I worked with has a known
problem in that it continues to drive
the SPI lines even when its *SS is
unasserted. The work-around is to
drive the module pin SPI_EN low,
which will free up the other SPI
lines. The ATmega168 uses the SPI
lines for serial programming, so I
had to do the SPI_EN trick even
though there are no other SPI
devices. The WIZ810MJ draws a fair
amount of current, so I did not want
to leave it powered up continuously.
I toyed with the idea of adding cir-
cuitry to power the module on and
off. Because the network link LED
status is available on a module pin, I
could periodically power on the
module, check for an active link,
and turn it off. In the end, I just put

in a toggle switch, which
was crude but effective.

A ULN2803 is used as
the solenoid driver. It is an
eight-driver package with
internal clamping diodes.
The inputs are logic-level
and were connected directly
to port pins on the micro-
controller. Each driver can
sink 500 mA, which is
ample for a typical ir riga-
tion solenoid valve drawing
about 200 mA at 12 VDC.
The solenoids are 24 VAC,
but are quite content r un-
ning on 12 VDC. Conve-
niently, inputs and outputs

and not on a PC. If the device
requires a PC installation, it stops
being a stand-alone device and
becomes yet another peripheral
ready to break when you modify
your PC.

HARDWARE
The hardware was designed to

include the fewest number of par ts.
The essential parts are an Atmel
ATmega168, a WIZ810MJ network
module, and a ULN2803 Darlington
array (see Figure 2). I do all of my
development work in Linux. The
excellent AVR toolchain available for
Linux is one of the reasons I prefer
Atmel microcontrollers. With Linux
command line tools, I can do all of my
firmware development at my desk,
not hunched over the lab bench. An
old laptop sits on the lab bench and
serves as a network-to-USB gateway
for the in-circuit programmer. I chose

from a standard web browser . The
browser pages provide data entr y and
display capabilities of the watering
schedule, as well as calendar-based
planning tools. The entire design is
self-contained. There are no extra
files, scripts, or drivers that need to
be installed on a PC.

An irrigation timer is not some-
thing you reprogram often. After an
initial period of fine-tuning, the unit
is expected to work, unattended, for
the rest of the season. I did not need
to add any daily repor ting, only a
minimal status page. This empha-
sizes the design point that the net-
work connection is only there for
reprogramming the device. Fancy
reports and real-time status pages
are engaging for the first few weeks
of ownership, but then for most peo-
ple the excitement of watching the
grass grow begins to fade.

The long periods of time between
reprogramming make it
so you don’t have to
install any information
on a PC. It is usually not
a problem to pop in an
installation CD when you
first buy a product.
Assuming there are no
missing drivers or system
conflicts, the first install
is easy. The problem
comes six months later,
after you have upgraded
your PC and cannot find
the installation CD. For
the same reason, it is
important that all HTML
pages live on the device

Photo 2—The irrigation schedule is the main browser page. Four solenoid valves are
represented by zones a–d. The three different programs determine at which time and
on which days the zones will be active.

Listing 1—This shell script compresses the HTML and JavaScript files as part of building the firmware image.
The compressed files reside in the Atmel ATmega168’s flash memory.

#!/bin/sh
FILES="error.html index.html edit.html common.js cal.html
day.html"
(
for f in $FILES; do

id=`echo $f | tr '.' '_'`
echo "prog_uchar $id[] = {"
gzip -9 -v $f | xxd -i
echo "};"

done
) > gz_data.inc

SCK1
__builtin_write_OSCCONL(OSCCON | 0x40); //lock

2903018_Bereiter.qxp 2/5/2009 1:11 PM Page 35

http://www.circuitcellar.com

36 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

limit current inrush problems, the
software sets the values bit by bit
with a small delay in between.

In a similar software rather than
hardware role, the WIZ810MJ’s reset
line is controlled by a por t pin rather
than RC logic. In addition to par ts
savings, this allows for a full par t
reset.

The network code is designed for
the specific task of communicating
with the one browser that it expects
to find on a private network. The
main loop polls the WIZnet sockets
for a page request. Only HTTP GET
requests are honored. The request
can be for either a file stored in the
flash memory file system or for a
data page built on the fly. Changes
to the data model are accomplished
with arguments of the page request.

In a system where a browser
request causes some action, such as
writing EEPROM or switching on a
sprinkler, minimize the chance that
a user unintentionally repeats the
action by clicking the REFRESH but-
ton. The method used here is to
clean up the location line by retur n-
ing a 307 REDIRECT result code.
With no arguments to the page
request, pressing REFRESH will sim-
ply reload the page with no addition-
al actions.

When using the WIZ810MJ as a
web server, there is a potential trap
if the pages being ser ved are com-
plex. The W5100 can suppor t a max-
imum of four simultaneous connec-

tions. If the HTML page ren-
dered by the browser has
more than four subelements
(e.g., <image> or <script>
tags), the browser will likely
issue simultaneous requests.
If a WIZnet socket is in LIS-
TEN state, it will accept a
connection. If the browser
attempts a connection for
which there is no listening
socket, the browser will get a
connection-refused error.
Depending on the browser,
this could result in either a
reported error or a noticeable
delay before a retry. The
workaround is to keep the
pages simple, with few

are on opposite sides of the DIP
package, making layout much easier
on a single-sided board.

The only user feedback from the
hardware are the WIZ810MJ’s two
network status LEDs and an LED
driven by the microcontroller. The
microcontroller-driven LED blinks
out either a hint at the IP address or
an indication of solenoid status.

DATA MODEL
There are a number of ways to

organize a watering schedule. Sever-
al vendors have agreed on a single
model, which is the one used here.
First, there are zones , which corre-
spond to a physical r un of pipe con-
trolled by a solenoid valve. Then
there are programs, which indicate
which days of the week and at what
time of the day to star t an
action. Make a table and put
the zones in the rows and
the programs in the
columns. At the intersec-
tions, decide if and for how
long a zone should be on for
each program. This can get
somewhat complex, but it
provides a good deal of flexi-
bility for things like long,
slow soakings and for fol-
lowing community
odd/even watering restric-
tions.

The ITAP’s internal data
model consists of an array of
program structures that keep
all of the specifics for a

program, including start times and
run length times, for each zone. All
times are kept in minutes rather
than hours and minutes. Inter nally,
this simplifies storage and compar-
isons. A running count is kept of the
day of the year in addition to the day
of the month. The for mer is used for
computing every N day cycles. The
latter is used for odd/even days of
the month.

SOFTWARE
The software divides into micro-

controller support, network code,
data model access, file storage, and
timer logic. The microcontroller
support code is minimal. The only
interrupt is the Timer 2 overflow,
which is configured as a 4-Hz R TC.
Everything else is done by polled
I/O. Every couple of seconds the
main loop checks if the WIZ810MJ
has been powered up. A simple read
of the last byte of the IP address is
performed. If the module is off, the
byte will read as 0xFF. If the byte
matches the expected value stored in
EEPROM, the WIZnet module is
assumed to be present and it is reini-
tialized.

The ATmega168’s PORT D con-
nects pin for pin to the ULN2803
solenoid controller. Thus, pin zero of
PORT D corresponds to solenoid
zero, pin one to solenoid one, and so
on. At each program step, there is
the possibility that you might
request all zones to switch on. To

Photo 4—The calendar view shows what will happen this month. The bars in the
bar graph correspond to the zones. The height of the bar shows the relative
time that the zone will be on that day.

Photo 3—The program details on the main page are
read-only. Clicking “edit” brings up an editable version.

2903018_Bereiter.qxp 2/5/2009 1:11 PM Page 36

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 37

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

subelements. Newer chips, such as
the WIZnet W5300, support up to
eight sockets.

An early design trade-off in a proj-
ect like this is deciding how much
flash memory to devote to storing
HTML page data. It would have been
easier in many ways to just wire in a
1-GB SD flash memory card and fill
it with the output from a web site
builder tool. However, this would
have negated the strong desire I had
to show by example that an attrac-
tive, useful, and feature-complete UI
could be implemented on a small-
footprint device.

Accepting the limitations of finite
storage, the question was how to
stay as small as possible. Early in the
design process, I considered keeping
HTML templates in some sor t of
compressed form. The plan was to
decompress the templates, fill in the
actual values, and then ser ve this
modified data to the browser . The
final design is better in ever y way.

If the pages are not modified but
instead have static content, they can
be highly precompressed with the
gzip utility and simply copied,
unmodified, from flash memory to
the network. No compression code is
needed. The pages are just a payload.
Modern browsers already accept
gzipped data, so nothing additional is
required.

Using JavaScript makes static con-
tent possible. The JavaScript lan-
guage has constructs for dynamically
building pretty much anything that
can be done with HTML. All of the
ITAP tables and forms are dynami-
cally built. The data needed to fill in
the tables and forms is formatted
using JavaScript Object Notation
(JSON) and resides in a separately
loadable JavaScript file. The file is

built on the fly each time a ser ver
request is made for “pdata.js.” In a
larger system, data would likely be
passed as XML. XML is a bulky for-
mat intended for data exchange
between unrelated systems. XML
really has no place in point-to-point
micro applications. The nice thing
about using JSON is that it is auto-
matically parsed as it is read by the
browser. Additional parsing is not
required.

Another important benefit associ-
ated with putting all of the UI build-
ing code in JavaScript is that there is
a clean separation between the UI
view and the data model. The data
model is maintained by the ITAP
firmware. The firmware knows
nothing of UI layout. A change to
the UI does not require a fir mware
change.

COMPRESSED FILES
Looking through the WIZnet sam-

ple code, I noticed copyright notices
around the code that accesses flash
memory-based files. Thus, I thought
it would be useful to show my stan-
dard tools approach to compiling
files into flash memory (see Listing 1).
This Linux shell script takes each
file, compresses it, converts it to
ASCII hexadecimal, and wraps the
result in a data declaration ready for
a C language #include statement.

USER INTERFACE
Photo 2 shows the ITAP’s main

schedule page. To keep the size
small, only standard buttons and
standard fonts were used. The sched-
ule page is implemented as one large
HTML FORM. Inside the FORM is a
TABLE built dynamically with
JavaScript. Only a small bit of
HTML is used to define the basic

Photo 5—Clicking on a specific day in the calendar view brings up this page, which shows when the zone will be
active.

2903018_Bereiter.qxp 2/5/2009 1:11 PM Page 37

http://www.circuitcellar.com
http://www.xgamestation.com
http://www.picservo.com
http://www.lvr.com

table and headings. Each page in the
UI contains the same first line:

<script language="JavaScript"
type="text/javascript"
src="pdata.js"></script>

This code loads the cur rent program
and zone data. Based on the number
of programs and zones, columns and
rows are dynamically added and pop-
ulated with their values. JavaScript
functions take care of details like
converting between minutes and
hour and minute values. There are
three programs and four zones in
Photo 2. The empty fields indicate
that the corresponding zone is off
during that program.

To keep the main schedule page
from getting too cluttered, only a
summary of the program values is
shown, and they are all read-only.
Clicking an Edit button brings up a
program edit page (see Photo 3). Both
program tables are generated by the
same JavaScript code. A flag tells the
JavaScript to hide or desensitize cer-
tain fields in read-only mode.

The basic program interval can be
set to either a fixed number of days
or odd/even days. The check box by
day of week is just an aid. It is no
different than selecting a one-day
interval. The days of the week check
boxes are used to modify the basic
interval. In an earlier design, I had
two rows of check boxes, one for
days when the program should r un
and a second for days when the pro-
gram should not run. This was not
necessary because a “not Friday”
program is logically the same as
selecting every day except Friday.
There is always a trade-off between
convenience and UI clutter. The Pro-
gram active check box is used with
the planning tools. To see what a
particular program contributes to
the overall totals, it can be tem-
porarily disabled.

As you can see, there is plenty of
flexibility, but also plenty of oppor-
tunity to make a mistake. The plan-
ning tools are a simple, but effective
innovation that gives a glimpse into
the future. Based on the cur rently
active programs, the firmware runs

the clock forward to determine how
much water each zone will get each
day. This summary data is used to
construct the calendar page (see
Photo 4). Each day in the calendar
contains a small bar char t. The let-
ters and colors of each column cor-
respond to a zone from the main
schedule page. For simplicity, the
height of the bar is limited to one of
four discrete steps. The bar graph is
not a GIF or JPEG image. Instead, it
is implemented in JavaScript as a
four-row table with variable ROWS-
PAN elements. As with the rest of
the UI, the firmware reports only
the data. The JavaScript makes all
display and layout decisions.

The final page is the Day page,
which drills down from a calendar
bar chart to show when (during the
day) the water will r un (see Photo 5).
Each tick mark corresponds to a 15-
min. interval. The tick marks are
constructed from TABLE rows with
a small white border to highlight the
individual tick. Together the Day
and Calendar pages make for accu-
rate “what if” planning.

I did not originally plan to have sta-
tus view or zone on/off over ride but-
tons because I did not expect to have
the network connected except during
reprogramming. I later added these
features mainly for debugging and

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

CIRCUIT CELLAR® • www.circuitcellar.com38

Editor’s note: This project won First Place in the 2007 WIZnet iEther net Design
contest. For more information about this design and the other winning projects,
go to www.circuitcellar.com/wiznet.

Thomas Bereiter (itimer@micaview.com) has written software for ever ything
from microcontrollers to huge distributed systems. He has a B.S. in computer
science from the University of Illinois. Thomas currently designs prototype
systems in Umbria, Italy.

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar .com/pub/Circuit_Cellar/2009
/224.

OURCES
ATmega168 Microcontroller
Atmel Corp. | www.atmel.com

WIZ810MJ Network module and W5100/5300 Ether net controller
WIZnet, Inc. | www.wiznet.co.kr/en/

P

S

demonstration purposes. The status
and override are implemented with
the JavaScript XMLHttpRequest()
facility, the cornerstone of AJAX.

IMPROVEMENTS
The ITAP was a fun project to build.

It was much more of a software project
than a hardware project. The design
has proven to be simple to use and
easy to explain to others. There is still
a learning curve to understand what
zones and programs are all about, but
this knowledge is also required for any
timer. The fact that there is no expen-
sive LCD sitting idle in the garden is
continuously comforting.

One serious drawback with the cur-
rent design is having a stati c IP
address for the ITAP. I did not want
the ITAP to get its address by DHCP,
because I expect to have a laptop
plugged into the ITAP while standing
in the garden. A reasonable alter native
would be for the ITAP to play DHCP
server for a laptop client.

WIZnet has released two addition-
al modules, the WIZ830MJ and
WIZ812MJ. I have not worked with
either, but both appear to be better
choices for new designs. The
WIZ830MJ has the W5300 chip. The
WIZ812MJ is a redesign of the
WIZ810MJ. Both new modules have
2.54-mm headers. I

2903018_Bereiter.qxp 2/5/2009 1:11 PM Page 38

http://www.circuitcellar.com/wiznet
mailto:itimer@micaview.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/224
http://www.atmel.com
http://www.circuitcellar.com
http://www.wiznet.co.kr/en/

40 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

Scott used a microcontroller, an embedded Ethernet
board, and a wireless router in an innovative control
system for a compact mobile r obot. The robot fea-
tures a mounted webcam that transmits r eal-time
pictures to a r emote laptop. Scott explains how he
planned the project, assembled the pieces, and cre-
ated the control software.

Wireless Mobile Robotics
A Wi-Fi-Enabled System With a Mounted Webcam

R

F
EA

TU
RE

ARTICLE
by Scott Coppersmith

obots are everywhere. They are used to build
cars. They are sent to poke at rocks on Mars.

Small rovers can vacuum your pool or your house, and
there are several different models at the local toy store.
I’ve played with RC cars, boats, planes, and helicopters
for many years, but after seeing TV shows like BattleBots
and Junkyard Wars, I had an itch to build something big-
ger and better to play with .

In 2001, I volunteered as a mentor for a FIRST Robotics
Competition at Penn High School in Mishawaka, IN. It
was an incredible experience. (If you like building mechan-
ical devices, I recommend that you consider becoming a
mentor.) The FIRST robots use controllers similar to stan-
dard RC types, which are capable of telemetr y and feed-
back, but they are a bit pricey for
the average designer. These days,
however, you can pick up a W i-Fi
router for approximately $30 and a
used laptop for as little as $100.
The two of these, along with a fast
Microchip Technology PIC micro-
controller and a WIZnet embedded
Ethernet board, make a nice plat-
form for a robot project.

In this article, I will describe how
I built a robotics system—which I
call the “WiFi-PIC-Bot”—along
with the control software and inter-
face electronics (see Photo 1). I
entered this project in the WIZnet
iEthernet Design Contest 2007.

Photo 1—This is the assembled WiFi-PIC-Bot with
a webcam. Pan and tilt servos are located just
below the camera.

But since then, the robot has gone through a few upgrades.
You can view the project as it was then (www .circuitcellar.
com/wiznet/winners/DE/001106.html).

The WiFi-PIC-Bot is a modified RC ClodBuster (dual-
motor, four-wheel drive with four-wheel steering) monster
truck. I replaced the RC ser vo receiver with a WIZnet
WIZ810MJ embedded Ethernet board controlled by a
Microchip Technology PIC24FJ64GA002. The WIZnet
board is connected to a Netgear WGR614 wireless router
that transfers steering and throttle ser vo data as UDP pack-

ets back and forth to a remote lap-
top. The PC program reads a joy-
stick, sends the servo commands
out through its Wi-Fi card, and dis-
plays a real-time picture from a
Linksys WVC54GC Internet-ready
webcam mounted on the robot.
One of the latest upgrades was pan
and tilt servos for the Linksys
camera.

MODIFICATIONS
Making an RC monster truck

into a robot isn’t a simple task.
Each issue had to be addressed sep-
arately. Many of the original design
components had to be modified to

Photo 2—In the control box, battery packs are at the top, power
supplies are at the bottom (left), and speed control is in the mid-
dle (left). A Microchip DM300027 development board with a WIZ-
net WIZ810MJ Ethernet board is in the lower right.

2903014_Coppersmith.qxp 2/5/2009 4:32 PM Page 40

http://www.circuitcellar.com
http://www.circuitcellar.com/wiznet/winners/DE/001106.html
http://www.circuitcellar.com/wiznet/winners/DE/001106.html
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted by permission. For subscription information, call (860) 875-2199, or www.circuitcellar.com. Entire contents copyright ©2009 Circuit Cellar Inc. All rights reserved.

www.circuitcellar.com • CIRCUIT CELLAR® 43

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

make the toy into a reliable and sturdy robot platfor m. The
ClodBuster’s single 7.2-V battery wasn’t sufficient to run the
vehicle for more than a few minutes, and I couldn’ t use it for
running the new processor, adding servos, the webcam, and
the wireless router. The stock body and suspension system
couldn’t carry much weight. The original motor gears were
fine for zipping around the yard, but were a bit too fast for
indoor use. The stock motor control was just a four-position
mechanical switch operated by a small ser vo. Slow speed was
accomplished by switching a resistor in series with the
motors. Each of these issues had to be addressed separately .

The first parts to go were the wimpy plastic body , the RC
receiver, the mechanical speed control, and the stock batter y
packs. An aluminum 8″ × 12″ × 2.5″ box fit nicely on top of

the frame. It had enough room inside for most of the elec-
tronics and batteries. I mounted power supply and speed
control cooling fans, power LEDs, and switches to the out-
side of the box. I drilled for ser vo wire access, a program-
ming connector, and network cable ports. I added a multi-
terminal, high-amperage connector for on-system batter y
charging with bank selection. I attached the Inter net cam-
era with its pan and tilt ser vos along with the Wi-Fi router
to the top of the box.

Both stock drive motors were already changed to high-
performance models, so I left them as they were. I changed
the transmission gears to the highest gear ratio I could find
to slow down the robot for indoor use and to add torque for
moving the extra weight around. I added hard r ubber sup-

ports inside the springs to the suspen-
sion system shocks to accommodate
the added weight of all the batteries
and new electronics.

The main motor drive speed control
had an interesting set of issues to
resolve. Two parallel high-performance
motors operating at high torque require
a high-current controller with reverse,
and I didn’t have one. However, I had a
Novak T-4 electronic speed control in
my stash of RC parts and a collection of
high-current MOSFETs. It was time for
a bit of reverse engineering. Under the
hood of the original T-4, the circuit had
six small FETs in parallel for forward
speed, and one FET for braking, with no
reverse. After a day of head scratching
and PCB probing with my oscilloscope,

Figure 1—This is the WiFi-PIC-Bot.

Listing 1—This is servo control output compare 1 setup code.

// Output compare pin setup
RPOR3bits.RP6R = 18; // Make Pin RP6(RB6) OC1
OC1CONbits.OCTSEL = 0; // Use Timer 2 data
OC1CONbits.OCM2 = 1; // Use PWM mode
OC1CONbits.OCM1 = 1; // OCFA fault detection disabled
OC1CONbits.OCM0 = 0;
OC1R = 0x0400;
OC1RS = 0x0c00; // Set timer compare value for servo center position
IFS0bits.OC1IF = 0; // Clear interrupt flag
IEC0bits.OC1IE = 1; // Enable the interrupt

// Timer 2 setup
TMR2 = 0; // Clear the timer
PR2 = 0x9000; // Set the servo update time for 20 ms
T2CONbits.TCKPS1 = 0; // Set the timer prescale 1:8
T2CONbits.TCKPS0 = 1;
T2CONbits.T32 = 0; // Set the timer for 16 bit mode
IFS0bits.T2IF = 0; // Clear interrupt flag
IEC0bits.T2IE = 1; // Enable the interrupt
T2CONbits.TON = 1; // Turn the timer on

2903014_Coppersmith.qxp 2/5/2009 4:32 PM Page 43

http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

I determined that I could remake this
controller into a full-bridge speed con-
troller without too much effor t. I
carved some custom heatsinks for the
new International Rectifier IRFP048
MOSFETs from an old Pentium
heatsink and added a cooling fan on
the outside of the box to complete the
new speed control system.

Three stacks of standard NiCd RC
car packs power the robot. The first
supply is for the main drive motors. It
is a parallel stack of two 7.2-V packs.
Those enable the robot to r un for
about 30 min. at slow speeds before
needing a charge. The second supply is
for the router and the PIC/WIZnet
electronics. I didn’t want the control
electronics and motors to share the
same battery packs for a reason. I
knew the motor batteries would most
likely be the first to r un down, and I
still wanted control over the ser vos at
all times. If you’ve ever had an RC car
or plane “run away” because the servo
power went dead before the drive
power, you know what I mean. I also
didn’t want to worry about conducted
EMI from the motors into the other
power supplies. The Netgear router
requires 12 V, and the rest of the con-
trol electronics need 5 VDC. I used a
stack of three 7.2-V NiCd packs in
series with two LM350T regulator cir-
cuits to supply these voltages.

The addition of the webcam and
two more servos was too much cur-
rent draw for the 5-V supply because
the camera alone requires 2 A. So, I

constructed an additional 5-V
supply from two 9.6-V RC car
NiCd packs and another
LM350T regulator circuit sim-
ilar to the one for the
PIC24FJ64GA002. A smart
charging station with temper-
ature probes and maybe some
Lithium polymer battery
packs will have to go on my
WiFi-PIC-Bot “upgrade-some-
day” list. Photo 2 shows the
inside of the control box with
some of the battery packs, speed
control, PIC24FJ64GA002 PCB,
and WIZ810MJ PCB installed.
Cooling fans are mounted on
the sides of the box for the
power supplies and speed con-

trol circuits and run off of the 12-V
supply. A switch for the speed control
along with switches for the power sup-
plies and fans are also mounted on the
sides of the box. I left a connector
inside to disconnect the motor supply
batteries while I fiddle around with
software and such so the robot won’ t
drive off the table unexpectedly from a
code error. A table-top robot hoist will
also have to go on the to-do list. I left
the original RC connectors on the
speed control and steering servos so I
could still drive the robot around with
the RC transmitter and receiver and
test the speed control by itself, if
needed.

EMBEDDED CONTROLLER
The embedded Ethernet board, speed

control, and servos for controlling

steering, camera pan, and tilt are wired to
a Microchip DM300027 16-bit, 28-pin
development board (see Figure 1). I
replaced the original crystal with an
8-MHz crystal to gain some speed and
installed a PIC24FJ64GA002 proces-
sor. The WIZnet board is connected to
the DM300027 development board by
wire wrapping the header connector
pins directly. The two boards commu-
nicate via the SPI bus. RB10 is used as
the slave select pin. RB5 and RB6 are
the PWM outputs from OC1. OC2 is
used for throttle and steering ser vo
control. OC3 and OC4 are used for
camera pan and tilt servo control. I
also wired RB3 with a resistor divider
(10:1) and a 3.3-V Zener clamp for a
battery voltage monitor. The resistor
divider is required because the three
battery packs in series at full charge
can be up to 27 V.

SOFTWARE
There are two separate software

packages in this system. The first is
the embedded code for the PIC, and
the second is the UDP client on the
external laptop. The RC servos oper-
ate from pulses produced by the
PIC24FJ64GA002’s timers. They are
available on the output compare regis-
ter pins. The published RC ser vo pulse
width specification is 1 to 2 ms,
although I’ve found that some ser vos
need a larger range of pulse widths for
control of their full span capability. If
you send a pulse that is too small or
too large, however, some servos will
keep their internal motors on and

Photo 3—This is a PC control program joystick setup and calibration
form.

Listing 2—This is the main loop timer routine (executed every 250 ms).

procedure TForm1.Timer1Timer(Sender: TObject);
begin

LJoyEx.dwSize:= sizeof(LJoyEx);
LJoyEx.dwFlags:= LJoyEx.dwFlags and JOY_RETURNALL;
joygetpos(JoystickID,@LJoy);
joyGetPosEx(JoystickID,@LJoyEx);
UpdateJoystick;
UpdateCalibration;
UpdateTelemetry;

end;

Listing 3—This code is for servo axis data calibration, scaling, and inversion.

if checkbox9.Checked=True then
SteeringPercent:=100-(trunc(SteeringValue/(StMax-StMin)*100))

else
SteeringPercent:=trunc(SteeringValue/(StMax-StMin)*100);

2903014_Coppersmith.qxp 2/5/2009 4:32 PM Page 44

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 45

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

repeated every 20 ms for the ser vo
control IC to stay awake.

Controlling one servo is rather sim-
ple. But when you have several ser vos,
the timer interrupts can conflict, so
it’s best to have one timer inter rupt
routine resetting all the others for the
main 20-ms loop. An oscilloscope can
be handy for checking pulse widths
and timing. The PIC24FJ64GA002 has
five internal 16-bit timers. Section 14
of the document, “PIC24 Family Ref-
erence Manual,” shows all of the reg-
isters involved with the timers. This
microcontroller has programmable I/O
pins, so you must also tell the device
what pin is to be used as what func-
tion during code initialization. The
set-up code for one of the ser vo con-
trol output pins and the associated
timer registers is in Listing 1.

WIZnet & Wi-Fi
Controlling the PICBot is achieved

by sending UDP packets back and
forth from a remote laptop to a
WGR614 wireless router. The Linksys
Internet camera and the WIZnet PCB

the servo is humming, but not mov-
ing, you may have gone too far . The
servo control pulse must also be

eventually cause internal damage to
the motor or gears, so keep that in
mind when writing RC servo code. If

Listing 4—This is the UDP packet format and transmit routine.

if (UDPLinkActive=True) then
begin
UDPString[1]:= char(170); //10101010;
UDPString[2]:= char(SteeringPercent);
UDPString[3]:= chr(ThrottlePercent);
UDPString[4]:= chr(PanPercent);
UDPString[5]:= chr(TiltPercent);
UDPString[6]:= char(85); //01010101
IdUDPClient1.Send(UDPString);
end;

Listing 5—Receiving battery voltage telemetry from the robot.

if (UDPLinkActive = True) then
begin
VBATT_Value:=IdUDPClient1.ReceiveString(IdTimeoutDefault);
if (VBATT_Value[1]='V') then
begin
Vbyte1:=byte(VBATT_Value[6]);
Vbyte2:=byte(VBATT_Value[7]);
VBATT_Number:=3.3*((Vbyte1*256)+Vbyte2)/1024;
VBATT.Text:=format('%2.1f VDC',[VBATT_Number]);
end;

end
else

VBATT.Text:='No Data';
end;

2903014_Coppersmith.qxp 2/5/2009 4:32 PM Page 45

http://www.circuitcellar.com
http://www.propox.com
http://www.machinepier.com

46 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

boxes, and the status of the joystick
switches are shown using checkbox-
es. The mapping of joystick axis to
the robot control servo variable is
done with up/down spin buttons and
a case statement.

The UpdateCalibration proce-
dure takes this raw data and changes
it into percentage values for the UDP
client (inverted if needed). If the
client is active, it sends the data out
over the network to the robot at the
designated IP address and por t (see
Listing 3 and Listing 4). The
UpdateTelemetry procedure checks
for any data sent back from the robot
(currently just one battery voltage)
and refreshes the edit box for that
value (see Listing 5).

Just as important as having an
oscilloscope handy for diagnosing
electrical hardware issues, a good net-
work analyzer is a must for watching
packet data. Ethereal (now called
WireShark) is a GNU open-source

protocol analyzer program that
works great for watching every
byte that slips into and out of
your network ports.

The camera video is shown on
a panel that pops up over the
joystick settings panel when you
press the Click for BotCam but-
ton at the top of the for m (see
Photo 4). A file-open dialog box
is used to pick the HTML file to
use for the camera panel (see
Listing 6).

The HTML file downloads and
runs a JavaScript file from the
camera that streams video at a
maximum of 30 frames per second
at a maximum size of 640 × 480
pixels. The fun part is that I can

are connected to the router using
short Cat 5 cables. The router is also
used as the DNS server, even though
the camera could operate as its own
Wi-Fi server, if needed. The UDP
datagram is arranged in the UDP
Datagram.doc file posted on the Cir-
cuit Cellar FTP site.

When the WIZnet board receives a
UDP message, the PIC24FJ64GA002
first checks byte 1 and byte 6 to deter-
mine if the packet is valid. It then
adjusts each servo pin timer value cor-
responding to the associated PWM
channel. The steering and throttle
timer values give the correct range of
servo movement span from 1,472 to
4,672 (0x05C0 to 0x1240 hex) for a
total of 3,200 counts. So, the equation
for the steering servo timer value is
((percent × 32) + zero offset) and the
equivalent PIC24FJ64GA002 code
would be OC1RS = ((Rx_Buffer[1] × 32)
+ 0x05C0).

PC SOFTWARE
The UDP client software for the

laptop control is written in Borland
Delphi Pascal. The code uses the
Microsoft multimedia library rou-
tines in Mmsystem.dll to poll the
joystick driver for available joysticks
and their parameter tables. I have col-
lected several joysticks over the
years, and all of them worked for the
robot until I added the camera pan
and tilt servos. Not all joysticks have
four axis controls; however, the con-
troller for my RealFlight simulator
has five axes and several switch-
es with a convenient USB con-
nector. I’ve found that the older
analog joysticks were a bit noisy
for robot control, and it’s just
about impossible to find a laptop
with an analog game por t on it
these days. I haven’t used any of
the joystick switches to control
anything yet, but I can imagine
the next robot upgrade will have
something to do with lasers or
maybe some bottle rocket
launchers or Nerf guns (safer for
work).

Once a joystick is selected from
the main set-up form, the controls
for various servos are mapped to
the output channels, inverted if

required, and calculated/calibrated from
the raw data to obtain a set of 0–100
percent values (see Photo 3). The des-
tination IP address and por t is select-
ed to match the WIZnet configura-
tion. When the Link button is acti-
vated, UDP datagrams are sent every
250 ms with all of the data to control
the robot servos. At the same time,
an HTML page is loaded into an inte-
grated browser panel that polls the
camera for a real-time video stream.
The camera’s IP address and video set-
up information is located in the
HTML file.

In Listing 2, the first four lines poll
the Microsoft multimedia driver for
the current status of all the poten-
tiometers and switches on the select-
ed joystick. The UpdateJoystick
procedure then updates the raw data
to each servo control variable and
shows the status of the joystick but-
tons and switches. The raw joystick
axis values are displayed with edit

Photo 4—This is a runtime form with a PICBotCam video screen.

Listing 6—This code is used to open an Internet browser window to show the robot camera video.

if (panel4.Visible = False) then
begin
panel4.Visible :=True;
Webbrowser1.Visible := True;
Button2.Caption := 'Click for Setup';
OpenDialog1.Title:= 'Open BotCam HTML File:';
OpenDialog1.FileName:= 'capperbotcam2.html';
If OpenDialog1.Execute then

WebBrowser1.Navigate('file://'+ OpenDialog1.FileName)
else

WebBrowser1.Navigate('about:Error Opening File');
end

end;

2903014_Coppersmith.qxp 2/5/2009 4:32 PM Page 46

http://www.circuitcellar.com

let anyone on the ’Net log in and watch
the video while the robot is r unning. I
just need to give a viewer the IP address
and log-in credentials. I can also set the
Wi-Fi security to keep hackers out.

AM I DONE YET?
No way! There’s a never-ending list

of gadgets and features for a “Future-
Bot.” Now that the robot has a camera,
it needs some sort of VoIP to commu-
nicate with the people it encounters
during its travels. Have I mentioned all
of the control buttons that need to
control something? A high-resolution
(approximately 8 megapixels) still cam-
era could be useful for getting a good
shot of something the Internet camera
finds interesting. Maybe I’ll rent it out
to the fire department for search-and-
rescue operations in tiny crawl spaces.
It could putz up and down the beach
with an attached metal detector and
tiny treasure scoop. I need a job at
NASA so I can do this full time.

I hope you enjoyed reading about
the PICBot. Have fun building your
own. (I know you want one.) I

Scott Coppersmith (rscopper@aol.com) holds a BSEE from Michigan Technological Univer-
sity and is currently working as a senior engineer for Robert Bosch LLC. He also teaches
evening classes at Ivy Tech Community College in South Bend, IN. Scott’s hobbies include
Tesla coils, fusors, lasers, embedded systems, and Delphi programming.

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar .com/pub/Circuit_Cellar/2009
/224.

ESOURCE
Microchip Technology, Inc., “PIC24 Family Reference Manual,” DS39704A,
2006.

OURCES
IRFP048 MOSFETs
International Rectifier | www.irf.com

WVC54GC Wireless Internet video camera
Linksys | www.linksys.com

DM300027 Development board and PIC24FJ64GA002 microcontroller
Microchip Technology, Inc. | www.microchip.com

WGR614 Wireless router
Netgear | www.netgear.com

WIZ810MJ Network module
WIZnet, Inc. | http://wiznet.co.kr/en/

P

R

S

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

CIRCUIT CELLAR® • www.circuitcellar.com48

Keep abreast of the latest news
from your industry, delivered
free to your desktop

Sign-up today at
www.electronicstalk.com

}

With a library of more than 49,000 articles from more
than 3,000 companies, we are the number one
destination for people making purchasing decisions!

Electronicstalk matching buyers with sellers
www.electronicstalk.com

2903014_Coppersmith.qxp 2/5/2009 4:32 PM Page 48

mailto:rscopper@aol.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/224
http://www.irf.com
http://www.linksys.com
http://www.microchip.com
http://www.netgear.com
http://wiznet.co.kr/en/
http://www.electronicstalk.com
http://www.circuitcellar.com
http://www.electronicstalk.com
http://www.rsappkits.com

26 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

of

Art

one

module (see Figure 1). In this article, I will describe how
I did it.

NETWORK MODULE
The WIZ810MJ dictates the way the camera communi-

cates with the other devices in the system (see Figure 2).
It is a network module that includes a W5100 TCP/IP
hardwired chip (including PHY) and mag-jack (RJ-45
with transformer) with other glue logic.

A network interface card (NIC) must have a unique
MAC address. Where can you find a MAC address? You
can buy 1,000 to 1,500 MAC addresses from the IEEE,
but it can be expensive. Thus, the best option is to use

Photo 1a—This is the complete web camera design. b—The wiring is fairly simple. c—The design features two single-layer boards.

a) b) c)

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 26

This versatile web camera system can take a picture at a resolution of
640 × 480 or 320 × 240, pan the camera horizontally and vertically, and
change its IP and gateway address to match a network. After each photo
is divided into 64-byte segments, an Ethernet module transmits the packets
over the Internet.

Web Camera Design

Y

F
EA

TU
RE

ARTICLE
by Minas Kalarakis

ou can use cameras for everything from
recording celebrations to building surveillance.

One of the most exciting new developments in camera
technology is the webcam. At the heart of a webcam is a
microcontroller that controls peripheral devices, such as
the camera module (camera chip, lens, etc.) and the com-
munications. Due to my interest in cameras, the Inter-
net, and embedded technology, it made sense for me to
design my own web camera (see Photo 1).

I built my web camera around a Microchip Technology
dsPIC30F4013 16-bit microcontroller, a COMedia C328-
7640 serial camera module, a WIZnet WIZ810MJ mo-
dule, and two standard servos for rotating the camera

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted by permission. For subscription information, call (860) 875-2199, or visit www.circuitcellar.com. Entire contents copyright ©2009 Circuit Cellar Inc. All rights reserved.

www.circuitcellar.com • CIRCUIT CELLAR® 27

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

an old Ethernet card. I had
one on hand, so I installed
it in my PC to get its
MAC and then I threw it
away. As a result, my cam-
era is recognized as an
Intel NIC.

DHCP OR STATIC IP
In addition to a MAC

address, the camera needs
an IP address. IP addresses
can be assigned statically
or dynamically. Dynamic
assignments are handled
by a Dynamic Host Con-
figuration Protocol
(DHCP) server. For exam-
ple, my home network
gets IP addresses from the ADSL router’s DHCP server,
which uses the range of 10.0.0.xx to 10.0.0.137. The
router itself has a static IP address of 10.0.0.138. Howev-
er, if the camera had a dynamically-assigned IP address,
none of the other machines would know what that
address is and they wouldn’t be able to communicate
with the camera. Therefore, the camera has a statically-
assigned IP address stored in the microcontroller’s EEP-
ROM at address 0x7FFC00. The default value for this
address is 10.0.0.50 (defined in the source code) and the
port is 50000. Of course, this IP address can be changed
through the firmware.

Listing 1 is the code that fetches the stored IP address
from the EEPROM. Each location in the EEPROM is 16
bits wide and can store 2 bytes. As you can see in List-
ing 1, the IP address, the SubNet mask and the gateway
address are copied to addr_param[], a global variable of
type char.

Other Functions like Send_a_UDP_Packet() can
access this array to get the IP address to include with
the data that the WIZ810 will send to the host comput-
er. Later in this article, I will describe the function that

acquires these parameters and stores them in EEPROM.

TCP OR UDP?
This was my first project using embedded Ethernet. I

had to decide between the the transmission control pro-
tocol (TCP) or the user datagram protocol (UDP). TCP
establishes a connection in advance and delivers the data
reliably and in the sequence it was sent. UDP features
an unreliable connectionless datagram transmission
structure. It processes data without establishing a con-
nection. Therefore, lost or out-of-sequence packets are
not hidden from the application. Also, there is no flow
control, which means that packets can arrive faster than
the recipient can process them.

I transmit photos with this system. So what if I lose
one? I can catch the next one.

On one hand, today’s computers are fast enough to
process multiple applications at the same time. On the
other hand, the UDP algorithm, as described in the
W5100 datasheet, is simpler than TCP. That’s why I
chose the UDP protocol.

The WIZnet module can be interfaced via a parallel bus
or via SPI. I chose SPI for its low pin count and simplici-
ty. Although the dsPIC30F4013 microcontroller has two
serial ports, I may develop future projects with microcon-
trollers with only one UART. However, UART1 on the
’3014 shares pins with the SPI interface, so it is neces-
sary to use a command like U1MODEbits.ALTIO=1; to
move the UART1 function to alternate pins. I also
issued a command for a 200-ms delay because it seemed
to need some time to do the job! The SPI port is initial-
ized in 8-bit master mode (see Listing 2).

A Microchip Technology TC2117-33 LDO regulator
supplies the WIZ810 with 3.3 V. It draws 146 mA. I
should also mention that the WIZ810 draws more cur-
rent when the cable isn’t connected. It gets really hot.
All W5100 inputs are 5-V-tolerant, which means that
they can be connected directly to the microcontroller.
However, for compatibility, I reduced the microprocessor’s

Figure 1—Here you see the WIZnet WIZ810MJ module and two standard servos that are used to rotate
the camera module.

Figure 2—The design is fairly straightforward. A dsPIC30F4013 sits
at the center of the design.

Servo y Servo x
World

C328
Camera

CPU
dsPIC30F4013

WIZ810
Module

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 27

http://www.circuitcellar.com

28

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

CIRCUIT CELLAR® • www.circuitcellar.com

output signal to 3.3 V with a resistor divider (see Figure 3).
A 33-Ω resistor is connected in series to eliminate the
SDI current. The SPI_EN and the *CS signals are con-
nected to Port B’s pins 11 and 12, respectively. The
RESET signal is pulled high using a 2.2-kΩ resistor and
connected to pin PB10.

CAMERA MODULE
The C328 camera module provides a serial interface

(UART) and a JPEG compression engine (see Figure 4).
The module consists of three main parts: an OmniVision
Technologies OV7640/8 VGA color digital camera chip
with an 8-bit YCbCr interface; an OV528 serial bridge,
which is an embedded controller chip with a JPEG
CODEC that can compress and then transfer image data
from the camera chip to external devices; and a program

in EEPROM that provides a set of user-friendly com-
mands for interfacing to external host. (This program
supports 11 commands for interfacing to the host.)

RESOLUTION
The module can produce pictures in Normal mode (no

compression) or Compressed mode (picture compressed
with the JPEG algorithm). The maximum resolution in
Compressed mode is 640 × 480 pixels. In Normal mode,
the resolution is 160 × 120 pixels. For each picture, a
total of 57,600 bytes (i.e., 160 × 120 × 3 bytes per pixel)
must be transferred to the host.

In practice, the size of a compressed picture file with a
resolution of 640 × 480 pixels rarely exceeds a total of 90 KB.
For a picture taken inside a
room, the file size is about
60 KB. For a half-size picture
with a 320 × 240 resolution,
the file size will be 30 KB or
less. The bytes must be trans-
ferred with a slow UART
interface at 57,600 bps.

VGA resolution is 640 ×
480 pixels with 16 or 256 col-
ors (the display standard for
the PC). It was introduced in
1987 with IBM’s PS/2 line and
was popular in PCs with 14″

Figure 3—I reduced the
microprocessor’s output
signal to 3.3 V with a
resistor divider.

Listing 1—IP, Subnet, and Gateway static values are stored in
EEPROM starting at location 0x7FFC00. For fast execution, cache
all values to the microcontroller memory.

for (i=0;i<11;i++){
Temp=Eeprom_Read(0x7FFC00+i);
addr_param[i]=(Temp & 0xFF00) >>8;
addr_param[i+1]=Temp & 0x00FF;
i++;

}

“The NAND market has grown faster than any technology in the history of semiconductors.”
— Jim Handy, Objective Analysis

Attend Flash Memory Summit for the latest practical
information on flash memory and the most recent

developments in flash memory applications.

Learn to make your products

Fast, Rugged
and Mobile

at the only conference
dedicated to flash memory!

4th Annual Flash Memory
Summit & Exhibition

August 11-13 2009
Santa Clara, California

FlashMemorySummit.com
Exhibit Space & Sponsorship Information:

Alan@FlashMemorySummit.com

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 28

mailto:Alan@FlashMemorySummit.com
http://www.circuitcellar.com
http://www.flashmemorysummit.com

32 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

or 15″ monitors. Many new flat pan-
els have a resolution of 1,280 × 1,024
or more. A picture with 640-pixel
horizontal resolution covers about
only half the monitor.

Modern desktop programming sys-
tems have functions that can resize
an image. A picture with a 320 × 240
pixel resolution is balanced in quali-
ty and file size.

CAMERA INTERFACE
The host (a dsPIC30F4013 micro-

controller) must initialize the C328
module after powering it up. Initial-
ization involves transmitting the

SYNC command (AA 0D 00 00 00)
via the UART until the module
sends an acknowledge command
(ACK). An ACK command is usually
received by the time the SYNC com-
mand is sent 60 times. A 10-ms delay

must be used between SYNC com-
mands. The best synchronization
occurs at 57,600 bps (see Listing 3).
At a high speed of 115,200 bps, syn-
chronization can’t be achieved.
Thus, the best for the host is to
power off and on the module. The
BSS22 transistor on the PCB acts as
a switch to power on and off the
module. At the speed of 57,600 bps,
the module synchronizes at 60
SYNC commands and never fails.
Thus, the firmware doesn’t wait to
receive the ACK command.

The C328 implements two differ-
ent communication modes, depend-
ing on which command the host
sends to get a snapshot picture

Listing 2—In the dsPIC30F4013, UART1 and the SPI share the same bus. Force UART1 to
use an alternative bus. The SPI is initialized in 8-bit master mode.

Uart1_Init(57600);
U1MODEbits.ALTIO = 1; // Clear the way for SPI
Delay_ms(200); // It needs some time to do the job
Spi_Init_Advanced(_SPI_MASTER, _SPI_8_BIT, _SPI_PRESCALE_SEC_2,
_SPI_PRESCALE_PRI_1, _SPI_SS_DISABLE ,
_SPI_DATA_SAMPLE_MIDDLE,_SPI_CLK_IDLE_LOW,_SPI_IDLE_2_ACTIVE);

Figure 4—The C328
camera module includes
a VGA color digital cam-
era chip and an OV528
serial bridge. A UART
is the intermediary
between the module
and host.

UART

C328 Camera module

Host

EEPROM
(Program)

OV7640/8
VGA Image

sensor

OV528
Compression

engine

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 32

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.linxtechnologies.com

(uncompressed or a JPEG picture). In
snapshot mode, the host sends a
Get_Picture() command and the
C328 replies with AA A0 01 xx yy zz
(3 bytes hold the length of data fol-
lowing these bytes) and all the bytes
in the picture’s file. This means
about 900 KB of data or 160 s for a
picture with a resolution of 640 ×
480. This mode is unacceptable
because 640 × 480 × 3 bytes per pixel
= 921,600 bytes × 10 bits/byte =
9,216,000 b/57,600 bps = 160 s per
photo, or 2.67 min per photo.

In JPEG mode, the C328 uses the
packet method. Before the Get_Pic-
ture() command, the host issues a
command to determine a packet’s
number of bytes. The default value
is 64 bytes long, and the maximum
is 512 bytes. After some tests, I
found that the best performance was
achieved with the default values.
Figure 5 illustrates this point, and
the camera_snapshot() function
implements it in code. As you can
see, this function requests the pic-
ture data. The resolution must be set
prior to this function. During the
main procedure, the Get_A_Photo
(char resolution) function is
called to set the resolution. But first,
it establishes the connection to the
camera with the camera_con-
nect() function. It sets the resolu-
tion with camera_setup(vgaReso-
lution) and finally calls the cam-
era_snapshot() function to get
the data. camera_snapshot() is
responsible for gathering the packet
data and passing them to the array
character packet[256]. After a packet
is received from the camera, it is
acknowledged, and the function
passes the data to the WIZ810MJ’s

socket 0 buffer and does everything
required to send it as a UDP packet.
It transfers the value of remote_ip
and remote port to the Socket 0’s
registers S0_DIPR and S0_DPORT,
respectively. Subsequently, it calcu-
lates the start address of data and
passes the values to the S0_TX_WR0
and S0_TX_WR1 registers. Finally,
the host issues a S0_CR_SEND com-
mand for the data to be sent to the
output and clears the send flag to be
ready for the next packet. At that
point, an enhancement can be made
to write the data directly to the

socket 0 buffer. To do
so, the length of the
packet must be set at
512 bytes long (maxi-
mum) and the UART
speed must be 115 kbps
to increase performance.
The overall process will
increase the frames cap-
tured by the host from
three to five per minute
to three to six per
minute. One frame more

isn’t important at this time.
On the PCB, there are two red

LEDs. One is connected on pin RC13
and flashes on SYNC commands.
The other is connected on RC14 and
flashes once when the camera takes
a picture.

The C328 requires 3.3 VDC to
work and its I/O is not 5-V-tolerant.
Therefore, a resistor divider (R3 and
R5) at the dsPIC30F4013’s UART2
TX pin is used to convert the 5-V
signal to 3.3-V levels. A 33-Ω resis-
tor (R4) was added to the
dsPIC30F4013’s UART2 Rx pin to

www.circuitcellar.com • CIRCUIT CELLAR® 33

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Listing 3—The C328 module must synchronize at the host UART speed. The host must send a special
packet several times. An LED connected at pin 13 blinks to indicate this.

void camera_connect(){
char i;

for(i=0;i<70;i++){
send(0xAA , 0x0D , 0 , 0 , 0 , 0); // Sending SYNC packets
PortCbits.RC13 ^=1;
delay_ms(10);

}
send(0xAA , 0x0E , 0x0D , 0 , 0 , 0); // Confirm SYNC with an ACK packet.
Connected=1;

}

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 33

http://www.circuitcellar.com
http://www.usbee.com

34 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

limit the current.

CAMERA ROTATION
Two standard servos—the second is

attached to the shaft of the first
servo—rotate the camera horizontally

and vertically. The dsPIC30F4013
communicates with servos via puls-
es. As the host, the dsPIC30F4013
generates a pulse of various lengths
approximately every 20 ms.

The pulse’s duration applied to the

control wire determines the angle of
the shaft. This is called pulse width
modulation (PWM). The servo
expects to see a pulse every 20 ms or
so. If the pulse spacing is greater
than about 50 ms (manufacturer-
dependent), the servo will enter
Sleep mode in between pulses. It
will move in small steps and the
output will be jerky. The off time
can vary. This has no adverse effects
as long as its value is between
approximately 10 to 30 ms. It is only
the on time that determines the
position of the output arm.

The pulse is normally between 1
and 2 ms long. The length of the
pulse is used by the servo to deter-
mine the position to which it should
rotate. Note that different servos
will have different constraints on
rotation. However, they all have a
neutral position that’s always
around 1.5 ms (e.g., a Futaba S3003
servo’s neutral position is 1,520 µs
and its maximum rotation is 1,900
µs). When a pulse is sent to a servo
that’s less than 1.5 ms, the servo

Photo 2—One board holds the dsPIC30F4013. The WIZ810MJ module is mounted on the
other.

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 34

http://www.circuitcellar.com
http://www.jkmicro.com
http://apcircuits.com

www.circuitcellar.com • CIRCUIT CELLAR® 35

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

frequency of 32 MHz. Therefore,
Timer2 is initialized through the

InitTimer2Interrupt() function with
the following parameters: dual com-
pare mode, continuous pulses output
(OC1CON = 0x0005), rising edge
start (OC1R) = 5, falling edge start
(OC1RS) = 52. The register PR2 is
set at 600. Changing the value of
OC1RS affects the “on” time. This
can be considered a duty cycle that
can be changed at will. The value of
25 corresponds to 0 degrees, and the
value of 85 to 180 degrees, with a
resolution of 3 degrees per step.
Channels 1 and 2 are initialized for
the two servos.

HARDWARE
As you can see in Photo 2, the

design consists of two single-layer
boards. One holds the dsPIC30F4013
and the second is piggy-backed to
WIZ810MJ module. The main board
is simple. It features a dsPIC30F4013
with an 8-MHz crystal, power sup-
ply circuitry, and headers for con-
necting the board holding the
WIZ810MJ (see Figure 6).

A 5-V, 1-A MCP1826S regulator
provides power to the system. A
TC2117-3.3 linear regulator on the
main board provides the 3.3 V

Figure 6—The processor PCB features a dsPIC30F4013, an 8-MHz crystal, power supply cir-
cuitry, and headers for connecting to the other PCB.

rotates its output shaft a number of
degrees counterclockwise from the
neutral point and holds it there. When
the pulse is wider than 1.5 ms, clock-
wise rotation occurs. Generally, the
minimum pulse is about 1 ms wide,
and the maximum pulse is 2 ms wide.
Because of the hardware (e.g., motor
and gears), the servo cannot rotate
instantly to the instructed position
with one pulse. The host has to issue
some pulses to the servo until it reach-
es the final position.

The nominal supply voltage for the
servo is 4.8 to 6.0 V at 7.2 to 8 mA.
A Microchip Technology MCP1826S
regulator supplies the entire device
with 5.0 V at 1,000-mA maximum
current. The supply voltage for the
servos is settled at 5 V, directly con-
nected to MCP1826S.

The dsPIC30F4013 drives the ser-
vos with pulses. This sounds like a
good application for the comparator
module of the microcontroller. The
comparator module is driven by
Timer2. The dsPIC has an 8-MHz
crystal and the PLL enabled with a
multiplier of four, giving a core clock

Figure 5—This is the command protocol to get a snapshot. The host is on the left. The host
requests the image as packets of a known size. At the end, it acknowledges with a special pack-
et. (Source: COMedia, “C328-7640 User Manual,” 2005, www.comedia.com.hk)

ACK
(AA 0E 01 xx 00 00)

ACK
(AA 0E 06 xx 00 00)

ACK
(AA 0E 04 xx 00 00)

Initial
JPEG Preview, VGA
(AA 01 00 07 yy 07)

Get picture
JPEG Preview picture
(AA 04 05 00 00 00)

Data
JPEG Preview picture
(AA 0A 05 ~~ ~~ ~~)

Set package size
512 bytes

(AA 06 08 00 02 00)

ACK
Package ID: 000h

(AA 0E 00 00 00 00)

ACK
Package ID: 001h

(AA 0E 00 00 01 00)

ACK
Package ID: F0F0h

(AA 0E 00 00 F0 F0)

Image data package
512 bytes, ID: 0000h

Note:
xx, yy: Don’t care
~~: Image size returned by

Image data package
512 bytes, ID: 0001h

The last image data
package

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 35

http://www.comedia.com.hk
http://www.circuitcellar.com

36 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

required by the WIZ810MJ module
and the C328 camera. Thus, the
WIZ810MJ module and the
dsPIC30F4013 are 3.3-/5-V-tolerant,
the C328 module is 3.3-V-only so
level-shifting circuitry is required. I
used level-shifting circuitry for both.

The host communicates with the
WIZ810MJ via the SPI bus. It uses the
UART port for the C328. A BSS22
transistor acts as a switch to power on
and off the C328 camera module.

MAIN BOARD FIRMWARE
The main board’s firmware (see

Figure 7) was written in the C lan-
guage. The MikroC compiler was used.
The total size of the code is less than
6 KB. MikroC has an evaluation version
that works fine with code less than 6 KB,
so it is easy to experiment with.

I first read about the WIZ810MJ in
Fred Eady’s 2007 article “iEthernet
Bootcamp: Get Started with the
W5100” (Circuit Cellar 208). He intro-
duces the W5100 and covers the topic
of sockets. In an example, Eady uses
the UDP protocol. After I made a deci-
sion about the protocol, I started look-
ing for code. The well-written W5100
manual details the process of sending
a UDP packet. Searching the Internet,
I also found code for Atmel’s micro-
processors. I keep some header files
from that code and the same alias for
further reference.

The firmware isn’t interrupt-driven.
The main function looks for data that
have arrived in the WIZ810MJ’s Rx
buffers by reading the Sn_RX_RSRx
register. It loops until the arrival of
data (see Listing 4). When data arrives,
it passes them to a global parameter
Packet[]. It moves the buffers
pointer to the new location and writes a
0x04 to S0_IR to clear the Receive flag.

Action is taken according to the first
byte in the packet. A switch statement

takes care of this. There are six differ-
ent cases, and among them are some
that combine actions. For instance,
case 53 (ASCII “5”) means “Rotate
camera then get a photo at 320 × 240
resolution.” The PC client can change
the web camera’s IP Subnet mask
value. Case 52 (ASCII “4”) takes care
of storing the new values to
dsPIC30F4013 EEPROM.

I want to bring special attention to the
SPI routine. When you try to use the
W5100 in SPI mode, even if the *SCS is
High, the W5100 (or WIZ810MJ) drives
the MISO. To avoid doing so, the func-
tions wr_wiz_reg(char reg_data,
unsigned int reg_addr) and
rd_wiz_reg(unsigned int reg_addr)

enable SPI_EN and then pull down the
*CS signal. They write or read from the
module and then they disable SPI_EN
and pull up the *CS.

WEBCAM PROGRAM
Software is required for the desktop

PC to communicate with the camera. A
PC program was needed to display the
photos on its screen. The language is
Visual Basic version 6.0 and standard
controls were used to enable everyone
to experiment with the code.

It all begins with the PC. The client
program is responsible for requesting a
picture, collecting the packets and
checking the photo’s integrity, and then
displaying it (see Photo 3). In the pro-
gram’s main window, there are two but-
tons marked 320 × 240 and 640 × 480.
After pressing a button, the program
sends a UDP packet using the control
WinSoc. The packet consists only of 1
byte. This is the character “2” for but-
ton 320 × 240 and the character “1” for
button 640 × 480. The WinSoc control
uses the camera’s static IP address and
port number to send the packet.

Figure 7—The firmware flow chart is fairly straightforward. It polls the WIZ810 for data. When
data arrives, action is taken according to the first received byte.

Start

Switch camera on

Poll WIZ810 for data

No

Yes

52 51 Store IP Subnet mask
gateway

Data
arrived

?

Rotate
servos

Examine
first byte

Is the last
packet?

Get a packet and
send it to PC

Initialize comparator
WIZ810

C328 Camera

Get a photo

49, 50, 51, 53, 54

Yes No

Listing 4—The firmware polls the WIZ810 for data arrived. The Sn_RX_RSRx register holds
the size of data arrived. If there is no data, then poll the WIZ810 again.

do{
hi_byte = rd_wiz_reg(Sn_RX_RSR0(0));
lo_byte = rd_wiz_reg(Sn_RX_RSR1(0));
get_size = make16(hi_byte,lo_byte);

}while(get_size <=0x0000); // if no bytes received --> loop

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 36

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 37

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

As I already mentioned, action is
taken according to the first byte in the
packet. A switch case takes care of this.
A click on button “320 × 240” sends the
character “2” (ASCII 50). The switch
case calls the function to get and then
send a photo in CCTV resolution.

The WinSoc control listens to the
default port, 50000, and collects the
data. The WinSoc control’s DataArrival
event will be raised when data arrives in
the default port, 50000. To inform the
program how many bytes it has to col-
lect, the first packet includes the logo
length=xxxx, where xxxx is the size of
the picture. Every packet that arrives
adds its bytes on a RAM buffer. When all
bytes arrive at the buffer, a LoadPic-
ture() function writes them to disk,
and then loads the file to a picture con-
trol. The picture control is configured to
double a picture’s width and height.
After that, the procedure checks to see if
the corresponding “continue” box over
the button is checked. If so, it issues a
packet with the same character to the
camera to get a new photo.

A progress bar on the top shows the
progress of the received bytes. There is a
Set button in the main window. By
clicking this button, you send the cam-
era a packet with all the values shown
above. The packet is 13 bytes long. The
sliders at the bottom left corner are used
to rotate the camera. Every time you
move the slider, the slider control fires

the change event and a packet with
new values are transmitted to the
camera.

IMPROVEMENTS
There’s more work to be done on

the firmware. It isn’t interrupt-driven.

A new packet can arrive, but it has
to wait until an entire photo is sent.
This requires a new signal to be
added on the PCB to connect the
WIZ810MJ interrupt to the micro-
controller.

The UART speed should be set to
115 kbps to improve the camera’s
connection. This requires the
firmware to poll the UART RX for
the proper answer before moving to
the next step. Right now, this design
operates with my home ADSL con-
nection at 1024/128 kbps. I can send
five frames per minute to my office
computer. I

Photo 3—Here you see the client program’s main window.

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/228.

ESOURCES
F. Eady, “iEthernet Bootcamp: GetStarted with the W5100,” Circuit Cellar
208, 2007.

WIZnet, “WIZ810MJ Datasheet,” Ver.1.2, 2008, www.wiznet.co.kr/en/pro
02.php?&ss[2]=2&page=1&num=23.

OURCES
COMedia C328-7640 Serial camera module
COMedia | www.comedia.com.hk
Electronics123.com (distributor) | www.electronics123.com

dsPIC30F4013 Microcontroller, MCP1826S regulator, and TC2117-33 regulator
Microchip Technology, Inc. | www.microchip.com

C compiler
mikroElektronika | www.mikroe.com/en/compilers/mikroc/dspic/

OV528 Serial bridge and OV7640/8 VGA Color digital camera chip
OmniVision Technologies, Inc. | www.ovt.com

WIZ810MJ Ethernet module
WIZnet, Inc. | www.wiznet.co.kr/en

Minas Kalarakis (info@kalarakis.gr)
holds a B.S. in marine communica-
tions from The Naval Marine School of
Crete. He is a network administrator
and computer technician for The Man
Power Organization. Minas’s main
areas of interest are software and
hardware development for embedded
systems. In addition his interest in
electronics, he enjoys flying RC
model aircraft and cycling with his
kids.

R

S

P

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 37

mailto:info@kalarakis.gr
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.wiznet.co.kr/en/pro02.php?&ss[2]=2&page=1&num=23
http://www.comedia.com.hk
http://www.electronics123.com
http://www.microchip.com
http://www.mikroe.com/en/compilers/mikroc/dspic/
http://www.ovt.com
http://www.wiznet.co.kr/en
http://www.circuitcellar.com

16 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

of

Art

one

the 5″ color TFT monitor. The simple user interface
includes a push button to select current conditions, the
forecast, and active alerts. The TFT monitor includes

Photo 1—The Internet Weather Display gathers weather data from the Internet and presents it on a
monitor. It displays current conditions, the forecast, and alerts issued by the U.S. National Weather
Service.

2907017_nickels.qxp 6/10/2009 9:13 AM Page 16

The Internet Weather Display is a weather station that operates without
external sensors. The design gathers weather data and alerts from the
Internet and displays it on a color TFT monitor. An LED flashes when alerts
are transmitted.

Internet Weather Display

I

F
EA

TU
RE

ARTICLE
by Steven Nickels

t seems like a weather station is one piece of equipment
that every electronics enthusiast has to have. But

for people who live in apartments, condominiums, or
townhomes, mounting exteri-
or sensors is typically diffi-
cult or prohibited. Even some
single-family home neighbor-
hoods have strict homeowner
association rules against
“unsightly” objects outside
the home. My Internet
Weather Display is a weather
station you can operate with-
out exterior sensors. The
project gets its data from pro-
fessional weather stations
located in your neighborhood,
most often at schools or other
government buildings. Like a
backyard weather station, it
shows current conditions. An
added bonus is that you get
forecasts from professional
meteorologists and alerts
issued by the U.S. National
Weather Service (NWS).

Photo 1 shows the project
in action. The system
retrieves weather data from the
Internet and then displays it on

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted by permission. For subscription information, call (860) 875-2199, or visit www.circuitcellar.com. Entire contents copyright ©2009 Circuit Cellar Inc. All rights reserved.

www.circuitcellar.com • CIRCUIT CELLAR® 17

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

built-in speakers for sounding an alert when new weath-
er alerts are received. An LED also flashes while alerts
are active to notify people who are hard of hearing.

WEATHERBUG API
During the past few years, several weather data providers

have popped up on the Internet. WeatherBug is one such
provider. It offers an application that resides in the task
tray of your Windows PC and constantly shows the tem-
perature of a local weather station. It can even alert you
when an NWS message has been issued. While this applica-
tion keeps you informed of the weather while you are
actively using your PC, many people do not keep their PC
fully powered on all day and night, so they could potential-
ly miss an important weather alert. It’s also inconvenient
to wait the 30 seconds to 2 minutes for a PC to power-up
just so you can check the forecast. A “real” weather station
must remain on and be able to show wind direction imme-
diately.

If you go to the WeatherBug website and get past the
pages for the general consumer, you’ll find the WeatherBug
Labs page. There, you learn how to install WeatherBug on
your Linux PC, cell phone, or personal webpage. A simple
device like my Internet Weather Display has limited
resources, so it needs a way to get just the raw data, and
this is provided through a service called the “WeatherBug
API.” I recommend you review its terms of use. As users of
the Windows PC application have seen, WeatherBug is sup-
ported by revenue from advertisements or through a yearly
subscription. It does not charge for access to the API, and
there are few restrictions if you use it for noncommercial

purposes. But if you plan on selling a device that uses the
WeatherBug API, your device must be able to open links to
the WeatherBug website and you may need to compensate
WeatherBug with a portion of your revenue.

The first step in getting access to the API is to register
on the WeatherBug Labs website. Upon successful registra-
tion, you are assigned a unique access code that must be
included with the request messages that are sent to the
server. The server watches how often your device requests
data and may refuse to respond if your device is polling for
data too often. Watch out for bugs in your code that may
cause a loop to send out a request message even though
your intent was a 1-minute polling period.

There are two message formats available: XML and
“pipe delimited.” The former is a bit more difficult to
use because you must format headers and keep track of
special strings of characters used to identify the data.
The pipe-delimited format is simpler because it uses
readable characters where the data is separated by the
“|” (ASCII 0x7c) character. The Internet Weather Display
uses the pipe-delimited format. Refer to the WeatherBug
API website for the complete documentation.

To request weather information, a message like this is
sent:

http://a1111111111.isapi.wxbug.net/WxAlertISAPI/WxAl
ertIsapi.cgi?GetAlert60&Magic=160&ZipCode=80234&U
nits=0&RegNum=0&Version=7&t=1005&lv=0

Note the use of the HTTP high-level protocol. Only the
“GET” command is necessary. As I already mentioned,

Figure 1—The Internet Weather Display uses a Parallax Propeller microcontroller to drive the video and audio interface. A WIZnet W5100
module handles all the Ethernet messaging up to the TCP/IP level.

2907017_nickels.qxp 6/10/2009 9:13 AM Page 17

http://www.circuitcellar.com

with a monochrome LCD. The “i”
consumer devices have set a new
standard in user interface, so a char-
acter or monochrome LCD just does-
n’t cut it any more. For this updated
version, I went with a bit more
color. Color TFTs are available, but
few larger than 2.8″ have a built-in
controller, and I definitely wanted
something bigger than 4″. I also
needed a microcontroller that could
handle a large color display. The Par-
allax Propeller seemed to be a per-
fect fit for this application.

A while ago, I saw the ads for the
Propeller microcontroller and
thought, “Finally, something new in
the area of microcontrollers.” But
because most of my projects used a
microcontroller costing less than
$10, the Propeller’s $25 price tag at
the time restricted my desire to
learn more about it. Fortunately,

18 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

the request message includes the
unique code assigned to you when
you registered at the WeatherBug
API website. The number following
“Magic=” identifies the data you’re
requesting. Use “10991” to request
the current/live conditions, “10992”
to request the two-day forecast, and
“160” to request the active alerts.
The three-day forecast and a list of
weather station IDs are also avail-
able. The number after “ZipCode=”
identifies the area for which you
want weather information. The
WeatherBug server will pick a sta-
tion near the specified zip code. You
could also specify “StationID=####,”
where “####” is a unique station
number from the aforementioned
list of station IDs.

The response is a stream of read-
able characters that includes HTTP
protocol information followed by
the weather data values. At the front
of the weather data information is
the “magic” ID. Verify this value to
run the proper parsing routine. The
data values that follow are separated
by the “|” character. The following
is an example of a response that con-
tains alert information:

160|5|3|1|2|1197848582|2|3|11978486
42|3|21|1197848702|

To extract the data, use a simple
string-parsing routine to get the
characters delimited by the “|” char-
acter. To reduce the number of bytes
that the server must send, some
fields use a number value to index
into a locally defined string table.
For example, the response for the
alerts message includes an “alert
type” value. The text for the alert is
stored in a table of strings in the
Internet Weather Display’s memory.
The table is searched for the match-
ing “alert type” number, and the
text to display is extracted from the
table.

VERSION 1.0 TO 2.0
I entered the first version of my

Internet Weather Display project in
the 2007 WIZnet iEthernet Design
Contest. In that version, I used an
NXP Semiconductors ARM processor

Parallax has since lowered the price
to a more comfortable $12, so I took
another look and found it could easi-
ly generate the signals for either
composite video or a VGA monitor. I
decided to go with composite video
because medium-size TFT monitors
with composite video inputs are
readily available for around $55,
thanks to the in-car entertainment
market. I could even connect the
project up to my HDTV and have
my own “weather channel.”

The Propeller P8X32A-40 micro-
controller is laid out in much the
same way as the demonstration
board offered by Parallax (see Figure 1).
The video signal is generated by
three output pins that set up a resis-
tor digital-to-analog converter. Two
audio channels are used to create an
attention-getting, warble-tone alert
sound when new alerts are received.

Listing 1—The main loop handles the user interface and polls the WeatherBug server for
updated weather data.

Set I/O
Initialize display driver
Initialize WIZnet W5100
Initialize variables

Main Loop (1ms)

If button is pressed (debounce),
If sleeping,
Turn on the display

If new alerts,
Show alerts

Else
Show current/live
Else

Show next screen
Reset alert sound
Set flag to update screen
Reset sleep timer

If sleep timer expired
Stop the display driver
If no new alerts,

Power off the display
(We need power to the speakers for alert sound)

If screen update needed & not sleeping
Show current/live, forecast, or alert(s)
Reset screen update flag

If new alerts, sound alert

If 5 min expired,
Poll for weather data
Set flag to update screen
Check for new alerts

2907017_nickels.qxp 6/10/2009 9:13 AM Page 18

http://www.circuitcellar.com

20 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

An LED flashes while there are
active alerts, and a push button is
used to select a new screen image.
The program code is stored on the
EEPROM. When the Propeller powers
up, its resident bootloader copies the
first 32-KB from that device into its
internal RAM, starts an operating
system driver called the “SPIN
interpreter,” and then starts execut-
ing the program code from RAM.

The WIZnet W5100 Ethernet con-
troller is the perfect companion chip
for the Propeller microcontroller.
Most other 32-bit microcontrollers
have a version that includes inte-
grated Ethernet. The Propeller does
not; in fact, it doesn’t come with
many peripherals at all. An external
MAC+PHY could be used, but a
TCP/IP stack would eat into the
limited program memory. A better
solution is to use the W5100 to han-
dle all the message passing on the
Ethernet up to the TCP/IP level. The
W5100 chip has both a SPI and a
parallel interface. I chose the SPI to
keep the design simple, and because
I didn’t need the high throughput
rate available in the parallel inter-
face.

The project was constructed using
soldered wire connections on a perf-
board. RCA connectors were used
for video and audio lines just in case
I wanted to try out different TV
monitors. I could’ve used direct wire
connections if the board had been
mounted inside the same plastic
case as the monitor.

The only required external con-
nections were the Ethernet cable
and power from a 12-VDC wall

transformer. If you use a small mon-
itor like the one in Photo 1 and you
can connect it to the same 12 VDC,
be careful that you have the right
size wall transformer. The Internet
Weather Display board components
require less than 100 mA, but my
monitor required 500 mA, so a good
choice was a 1-A transformer. If
you’re using a monitor or TV with
its own power source, a 250-mA
transformer is sufficient. To add a
bit of “green” to the project, the
software turns the TFT monitor off
after a sleep period using a MOSFET
switch pair.

SOFTWARE
This project was the first time I

used the Propeller, so I had a little
bit of a learning curve to overcome. I
had three options for code develop-
ment: Parallax’s custom SPIN lan-
guage, C language using an Image-
Craft compiler, and assembly lan-
guage. I chose the SPIN language
because it appeared simple to learn
and it didn’t cost me anything. Par-
allax provided the Propeller Tool
IDE that enabled me to create the
SPIN source code files and download
them to the chip through a small
USB programming adapter. The Pro-
peller did not offer an emulator, nor
did the chip have any on-chip debug,
so I had to be a little creative while
debugging. Luckily, the included
library code that drove the compos-
ite video signal worked right away
and I was able to use the TFT screen
to watch values.

Listing 1 presents pseudocode for
the main loop. If you press the push

button, the show variable is incre-
mented to select a different display
screen. Pressing the push button also
stops the alert sound if it’s on. Every
5 minutes, the WeatherBug server is
polled for the weather data. The
alert information is checked to see if
there are any new alerts. If there are,
the alert sound is turned on. To be
“green,” the display is turned off 20 s
after the last button press. You may
want to remove this feature if you
use a standard television set instead
of a small TFT monitor or if you
want the display to be on all the
time. Also, if you manually turn off
the TV to save power, then connect
the audio outputs to separate ampli-
fied speakers so that you’re alerted
to new weather statements.

Photo 2 shows the three screens.
The Current Conditions screen
includes temperature, average wind
direction and speed, and rainfall
totals (see Photo 2a). The Forecast
screen shows the high and low tem-
peratures and expected conditions
for the next two time periods (see
Photo 2b). The Alerts screen shows
active weather statements (see
Photo 2c). The display can show
only two alerts at a time. You can
view additional alerts, if they exist,
by pressing the push buttons. The
screens are drawn using the Graph-
ics library included with the Pro-
peller Tool. For more information
about how the Propeller microcon-
troller draws images, refer to Chris
Cantrell’s article “Tile Graphics”
(Circuit Cellar 209, 2007).

Listing 2 shows pseudocode for the
steps needed to get data from a

Photo 2a—The Current Conditions screen shows rainfall totals, temperature, and average wind direction and speed. b—The Forecast screen
shows the high and low temperatures, as well as the expected conditions for the next two time periods. c—The Alerts screen displays
active weather alerts and updates.

b) c)a)

2907017_nickels.qxp 6/10/2009 9:13 AM Page 20

http://www.circuitcellar.com

22 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

WeatherBug server. Since there are
multiple servers and the IP address-
es of those servers may change, the
first step is to perform a domain
name system (DNS) transaction.
After the response is received, the
WeatherBug server’s IP address is
known, and the request messages for
live/current conditions, forecast,
and alerts can be sent. After each
request is sent, we get the responses
and save them to specific buffers.

The DNS transaction consists of
sending a query message to a DNS
server. The server then responds
with a message that includes the IP
address that must be used. In my

network setup, my DSL modem acts
as a gateway to a DNS server out on
the Internet. The query message is
sent to my DSL modem, and then
the modem forwards the message to
a DNS server on the Internet. The
modem also forwards the response
back to my device. The project’s
software extracts the WeatherBug
server IP address from the response.
To keep things simple, the DNS
transaction is performed each time
the weather data is updated. If you
want a higher update rate, it would be
better to parse the DNS response for
the “time-to-live” parameter and per-
form only the DNS transaction after

Listing 2—This pseudocode shows the sequence needed to get weather data from the
WeatherBug server. First, DNS must be used to obtain the IP address of one WeatherBug
server. A request is made to the server to send back the current/live conditions, a two-
period forecast, and a list of active alerts.

-DNS
Set destination IP to 192.168.0.1 (my DSL modem)
Set destination port to 53
Open UDP socket
Send DNS query message
Wait for response
Get the response
Parse for the WeatherBug server IP

-Connection Setup
Set destination IP to WeatherBug server IP
Set destination port 80
Open TCP socket

-Get Live/Current Weather Data
Connect
Send request for live data, HTTP “GET”
Wait for response
Get response
Parse for weather information, save to specific buffer
Disconnect

-Repeat above for Forecast

-Repeat above for Alerts

-Connection teardown
Close socket

The W5100 does most of the ‘heavy lifting.’
It handles the entire Ethernet interface up to
the TCP/IP level. It has a simple command
interface to load data for sending outgoing
data and for reading received data.

”“

2907017_nickels.qxp 6/10/2009 9:13 AM Page 22

http://www.circuitcellar.com
http://keil.com/dd
http://www.keil.com/rtos
http://www.keil.com

that time expires.
If you look at the code that’s posted

on the Circuit Cellar FTP site, you’ll
notice that little code is required to
support the W5100. The W5100 does
most of the “heavy lifting.” It han-
dles the entire Ethernet interface up
to the TCP/IP level. It has a simple
command interface to load data for
sending outgoing data and for read-
ing received data. I ported the
W5100 driver code from the first
version of the project without too
much trouble. The Propeller’s SPIN
language is similar to C, but it has
some interesting nuances, such as
the strict use of indentation rather
than braces to define statement
blocks.

FEATURE CREEP
There are many ways to customize

this project to your liking. First,
there are other weather data
providers. The Weather Channel
provides data, but its terms of use
are a bit strict. The NWS provides
data with very few rules, but the
interface is more complicated. The
advantage of the NWS’s data is that
it is detailed, so you can see exactly
how much snow is predicted and
which direction a storm is moving.

Weather is just one type of infor-
mation the project can display.
Other data providers support news
and stock updates. Be prepared to
learn a new protocol like XML,
SOAP, or RSS because most services
don’t provide simple data interfaces
like WeatherBug’s pipe delimited for-
mat.

My design uses a 64-KB EEPROM,
where only 32 KB are used to sup-
port the Propeller’s 32-KB RAM copy
of the program code. You can use the
remaining 32 KB to log data or store
configuration values. You can also
put additional devices on the I2C bus
for more storage. In addition, you
can use the EEPROM to store image
data so that more RAM is available
for program code. Images are cur-
rently used on the forecast screen
and the raw data is combined with
the program code.

One nice feature would be to show
radar images in a loop. Although it

isn’t part of the WeatherBug API,
you could “get” the image from the
WeatherBug web site, store the last
four images locally, and set up the
display to loop the images. You may
want to go with a different micro-
controller and TFT to support this
feature. The radar images are usually
in JPEG format, so you’d need the
code to convert the image file to a
bitmap. There are a few open-source
solutions available, but the memory
requirements are significantly
greater. The Internet Weather Dis-
play’s graphics capabilities are some-
what limited, so it might take a lot
of work to get a clean radar image.
Consider using a higher-resolution
TFT with a digital interface.

The Internet Weather Display uses
simple tones to alert you when new
alarms are detected. The Propeller
can generate complex sounds with
its StereoSpatializer and VocalTrack
libraries. You can use voice
announcements or musical tunes if
you want sounds that are more
pleasing to hear. There are few
things worse than waking up to a
loud monotone beep during the mid-
dle of the night. You can modify the
software to play different sounds
based on the type of alert. Loud,
attention-getting sounds can be used
for warnings. A quiet, single “ding”
sound could be used for advisories.

Do you want every feature? First
off, step away from the “dark side,”
because you’re starting to think like
a person in a marketing department.
The current version of the Propeller
microcontroller has memory limita-
tions, and my code uses just about
every byte. The graphics library in
Propeller Tool normally uses the
double-buffering of a 12-KB image
buffer. This project doesn’t use ani-
mation, so I was able to use only a
single buffer and I got back a good
amount of memory for program
space. There are other Propeller
hardware platforms that support
larger memory configurations by
swapping program code between the
RAM and external EEPROM as need-
ed. Also, Parallax is currently work-
ing on the next version of the Pro-
peller chip, and it will undoubtedly

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

CIRCUIT CELLAR® • www.circuitcellar.com24

Standards improve quality and enable

designers to share components across

different projects.Today, ARM®

Cortex™-M profile processors, combined

with the Cortex Microcontroller

Software Interface Standard (CMSIS) and

optimized middleware from the

industry’s largest ecosystem, are setting

the hardware and software standards for

microcontrollers.

These standards enable leading vendors

such as Luminary Micro, NXP, and

STMicroelectronics to supply advanced

microcontrollers, while maximizing code

reuse across multiple platforms.

Standards
Make
Sense

“The strengths of ARM processor-based
NXP microcontrollers are fundamentally
changing digital products by combining
ease-of-use with high connectivity and low

power consumption.”

Geoff Lees
Vice President and General Manager,
Microcontroller Product Line

Cortex-M3
Microcontrollers
Make Sense

For more information visit

www.onARM.com

TheArchitecture for the

DigitalWorld
®

©ARM Ltd.AD158 | 01.09

2907017_nickels.qxp 6/10/2009 9:13 AM Page 24

http://www.circuitcellar.com
http://www.onARM.com

www.circuitcellar.com • CIRCUIT CELLAR® 25

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

your junk box. You’ll get a unique
WeatherBug code when you register
at the WeatherBug Labs website.

GO SENSOR-FREE
The Internet Weather Display

project enables everyone to have a
weather station no matter where
they live. Even if you don’t face the
same restrictions associated with
mounting exterior sensors as some
other users, this design may be bet-
ter than a backyard weather station
because you receive accurate, profes-
sional forecasts and NWS alerts. You
don’t have to worry about ideal sen-
sor placement or the cost of main-
taining and replacing the sensors.
You can even modify the design to
connect with other data providers to
display important data such as news
headlines and sound stock market
alerts. I

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/228.

ESOURCES
Parallax, Inc., “Propeller Manual,” V1.01, www.parallax.com/dl/docs/prod/
prop/WebPM-v1.01.pdf

WeatherBug, “WeatherBug API,” Pipe Delimited Format, http://weather.
weatherbug.com/desktop-weather/api-documents.html.

W5100 and WIZ810MJ Datasheets and information, WIZnet, www.wiznet.
co.kr/en.

OURCES
Propeller P8X32A-40 Microcontroller
Parallax, Inc. | www.parallax.com

WeatherBug Labs API
WeatherBug | http://weather.weatherbug.com/labs.html

W5100 Ethernet controller and WIZ810MJ network module
WIZnet Co. Inc. | www.wiznet.co.kr

P

Steven Nickels (ssea000@gmail.com) has a B.S. degree in electronic engineering
technology from Minnesota State University, Mankato. He is a senior soft-
ware engineer at Medtronic Navigation in Louisville, CO. Steven has not yet
received any complaints from neighbors about the odd-looking equipment
around his house.

R

S

include more RAM.
If you want to try and make this

into a sellable product, make sure
you check the data provider’s terms
of use. They will likely require some
sort of compensation. You will also
want to make the code much more
robust by adding features such as the
ability to select the WeatherBug data
source, and the ability for the device
to get its IP address using DHCP. All
Ethernet devices must have a unique
hardware/MAC address. The IEEE
administers these addresses, and you
can purchase a range. Note that if
you use the project’s code, both the
MAC address and the WeatherBug
unique identifier code have been set
to illegal values. You must obtain
your own unique values. If building
a version for your own use, then per-
haps use the MAC address from on
old PC Ethernet card that’s sitting in

2907017_nickels.qxp 6/10/2009 9:13 AM Page 25

mailto:ssea000@gmail.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.parallax.com/dl/docs/prod/prop/WebPM-v1.01.pdf
http://weather.weatherbug.com/desktop-weather/api-documents.html
http://www.wiznet.co.kr/en
http://www.parallax.com
http://weather.weatherbug.com/labs.html
http://www.wiznet.co.kr
http://www.circuitcellar.com
http://www.pololu.com/ccad

	coverWIZnet.pdf
	Eady_PRIMER
	Winner Spread 214
	Ernst-217
	Blackwell-218
	Pennell-Thomas-219
	Nickels-220
	Bereiter-224
	Coppersmith-224
	Kalarakis-228
	Nickels-228

