

SIM7080G&SIM7022 Compatible Design

LPWA Module

SIMCom Wireless Solutions Limited

SIMCom Headquarters Building, Building 3, No. 289 Linhong
Road, Changning District, Shanghai P.R. China
Tel: 86-21-31575100
support@simcom.com
www.simcom.com

Document Title:	SIM7080G&SIM7022_Compatible_Design_V1.00				
Version:	1.00				
Date:	2020-10-22				
Status:	Released				

GENERAL NOTES

SIMCOM OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS, TO SUPPORT APPLICATION AND ENGINEERING EFFORTS THAT USE THE PRODUCTS DESIGNED BY SIMCOM. THE INFORMATION PROVIDED IS BASED UPON REQUIREMENTS SPECIFICALLY PROVIDED TO SIMCOM BY THE CUSTOMERS. SIMCOM HAS NOT UNDERTAKEN ANY INDEPENDENT SEARCH FOR ADDITIONAL RELEVANT INFORMATION, INCLUDING ANY INFORMATION THAT MAY BE IN THE CUSTOMER'S POSSESSION. FURTHERMORE, SYSTEM VALIDATION OF THIS PRODUCT DESIGNED BY SIMCOM WITHIN A LARGER ELECTRONIC SYSTEM REMAINS THE RESPONSIBILITY OF THE CUSTOMER OR THE CUSTOMER'S SYSTEM INTEGRATOR. ALL SPECIFICATIONS SUPPLIED HEREIN ARE SUBJECT TO CHANGE.

COPYRIGHT

THIS DOCUMENT CONTAINS PROPRIETARY TECHNICAL INFORMATION WHICH IS THE PROPERTY OF SIMCOM WIRELESS SOLUTIONS LIMITED COPYING, TO OTHERS AND USING THIS DOCUMENT, ARE FORBIDDEN WITHOUT EXPRESS AUTHORITY BY SIMCOM. OFFENDERS ARE LIABLE TO THE PAYMENT OF INDEMNIFICATIONS. ALL RIGHTS RESERVED BY SIMCOM IN THE PROPRIETARY TECHNICAL INFORMATION , INCLUDING BUT NOT LIMITED TO REGISTRATION GRANTING OF A PATENT , A UTILITY MODEL OR DESIGN. ALL SPECIFICATION SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.

SIMCom Wireless Solutions Limited

SIMCom Headquarters Building, Building 3, No. 289 Linhong Road, Changning District, Shanghai P.R. China

Tel: +86 21 31575100

Email: simcom@simcom.com

For more information, please visit:

https://www.simcom.com/download/list-863-en.html

For technical support, or to report documentation errors, please visit:

https://www.simcom.com/ask/ or email to: support@simcom.com

Copyright © 2021 SIMCom Wireless Solutions Limited All Rights Reserved

www.simcom.com 2 / 35

Version History

Date	Version	Description of change	Author
2020-10-22	1 00	Released	Xin Zhou
2020-10-22	1.00	Released	Chenglang Hu Meihao Li

www.simcom.com 3 / 35

Contents

1	Intr	roduction	7
	1.1	Product Outline	7
2	Pac	ckage Information	9
	2.1	Pin Assignment Overview	9
	2.2	Differences Overview	10
	2.3	Differences of Electronic Characteristic	10
3	Red	commended Footprint	12
	3.1	Top and Bottom View	12
	3.2	Recommended Footprint	13
	3.3	Recommended Stencil Design	
4	Har	rdware Reference Design	16
	4.1	Power Supply	
	4.2	Power on/off and WAKEUP circuit	17
	4.3	Reset Circuit	18
	4.4	UART Interface	19
	4.5	USIM Interface	21
	4.6	USB Interface	21
	4.7	Network Status Indication	22
	4.8	Audio Interface	23
	4.9	I2C Interface	24
	4.10	ADC Interface	25
	4.11	RFGRFC Interface	25
	4.12	RF Interface	26
	4.13	GNSS	27
	4	4.13.1 GNSS Technical specification	27
	4	4.13.2 GNSS Application Guide	28
5	Арр	pendix	30
	5.1	Design check list	30
	5.2	Related Documents	32
	5.3	Terms and Abbreviations	33
	5 <i>1</i>	Safety Caution	25

Table Index

Table 1: SIM7080G and SIM7022 Frequency Bands and air interface······	7
Table 2: The Differences overview	10
Table 3: The Differences overview	10
Table 4: Power Supply Type and Power Switching Circuit Relationship	16
Table 5: The differences for VBAT power range······	17
Table 6: 39 pin electrical parameters······	18
Table 7: SIM7080G NETLIGHT pin status······	23
Table 8: SIM7022 NETLIGHT pin status······	23
Table 9: The Differences overview	24
Table 10: The Differences overview	25
Table 11: Trace loss·····	
Table 12: Recommended TVS······	27
Table 13: Schematic Check List······	30
Table 14: PCB Layout Check List······	31
Table 15: Related Documents	32
Table 16: Terms and Abbreviations······	33
Table 17: Safety Caution·····	35

Figure Index

Figure 1: Pin assignment overview	9
Figure 2: SIM7080G and SIM7022 top and bottom view	12
Figure 3: Recommended Stencil Design for SIM7080G and SIM7022 (Unit: mm)	13
Figure 4: Recommended Stencil Design for SIM7080G (Unit: mm)	14
Figure 5: Recommended Stencil Design for SIM7022 (Unit: mm)	15
Figure 6: Power supply reference circuit	16
Figure 7: Power on/off and wakeup reference circuit	17
Figure 8: Reset reference circuit	18
Figure 9: UART full modem circuit	
Figure 10: UART null modem circuit	20
Figure 11: Reference circuit of level translator	
Figure 12: SIM interface reference circuit	21
Figure 13: USB interface reference circuit	22
Figure 14: NETLIGHT reference circuit	23
Figure 15: Audio codec reference circuit	24
Figure 16: I2C reference circuit	25
Figure 17: RFGRFC interface reference circuit	26
Figure 18: Antenna matching circuit (MAIN_ANT)	26
Figure 19: Active antenna circuit	28
Figure 20: Passive antenna circuit (Default)	29

1 Introduction

This document is targeted for customers to understand the differences between SIM7080G and SIM7022. Users can use SIM7080G or SIM7022 module to design and develop applications quickly.

1.1 Product Outline

The physical dimension of SIM7080G and SIM7022 is 17.6mm×15.7mm×2.4 mm. The following table shows the differences frequency bands and interface of SIM7080G and SIM7022.

Table 1: SIM7080G and SIM7022 Frequency Bands and air interface

Network Type	Band	SIN	17080G	SIM7022
	Category	M1	NB1/NB2	NB2
	LTE-FDD B1	✓	✓ \	✓
	LTE-FDD B2	~		✓
	LTE-FDD B3		/	✓
	LTE-FDD B4	~	~	✓
	LTE-FDD B5	\	✓	✓
	LTE-FDD B8	✓	✓	✓
	LTE-FDD B12	✓	✓	✓
	LTE-FDD B13	✓	✓	✓
LTE-FDD*	LTE-FDD B14	~		✓
HD-FDD	LTE-FDD B18	✓	~	✓
	LTE-FDD B19	✓	~	✓
	LTE-FDD B20	~	~	✓
	LTE-FDD B25	✓	~	✓
	LTE-FDD B26	✓	✓	✓
	LTE-FDD B27	~		✓
	LTE-FDD B28	✓	✓	✓
	LTE-FDD B66	✓	~	✓
	LTE-FDD B71		✓	✓
	LTE-FDD B85	✓	✓	✓
GNSS	GPS		✓	
GNOO	GLONASS		✓	

7 / 35 www.simcom.com

BeiDou	✓	
Galileo	4	

Galileo is default closed in software. But users can open it via AT command "AT+CGNSMOD". For more information about these AT commands, please refer to Document [3]

www.simcom.com 8 / 35

2 Package Information

2.1 Pin Assignment Overview

The following table shows the pin assignment of SIM7080G and SIM7022.

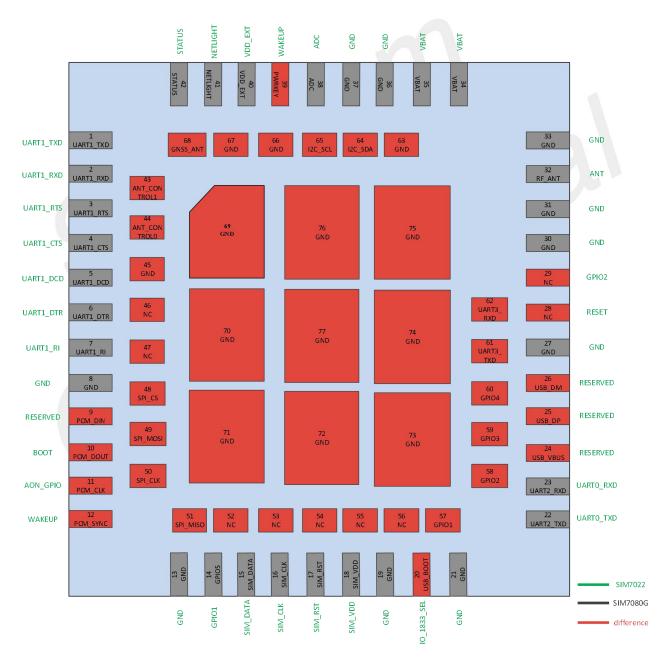


Figure 1: Pin assignment overview

www.simcom.com 9 / 35

2.2 Differences Overview

Table 2: The Differences overview

Functions	SIM7080G	SIM7022
Cellular technology	CAT-M,NB-IOT,GNSS	NB-IOT
Audio	Support	Not support
USB	Support	Not support
PWRKEY	Support	Not support
IO_1833_SEL	Not support	Support
SPI	Support	Not support
I2C	Support	Not support
RFGRFC	Support	Not support
Download interface	USB	UART1
Debug interface	UART2	UART0
IO Power Domain	1.8V	1.8V(default)/3.3V(IO_1833_SEL pull down)

2.3 Differences of Electronic Characteristic

Table 3: The Differences overview

Pin#	Ę	SIM7080G	SIM7022			
	PIN name	Voltage range	PIN name	Voltage range		
34,35	VBAT	2.7V~4.8V	VBAT	2.2~4.3V		
1~7	UART1	1.8V	UART1	1.8V/3.3V(default 1.8v)		
15~18	SIM card	1.8V	SIM card	1.8V/3.0V		
22,23	UART2	1.8V	UART0	1.8V/3.3V(default 1.8v)		
25,26	USB	1	Not support	1		
28	1	1	RESET	1.3V		
38	ADC	0~1.875V	ADC	0~3.3V		
39	PWRKEY	1.5V	WAKEUP	1.3V		
40	VDD_EXT	1.8V	VDD_EXT	1.8V/3.3V(default 1.8v)		
41	NETLIGHT	1.8V	NETLIGHT	1.8V/3.3V(default 1.8v)		
42	STATUS	1.8V	STATUS	1.8V/3.3V(default 1.8v)		
61,62	UART3	1.8V	١	1		

The module GPIO level of SIM7022 can be control by the IO_1833_SEL pin. When the pin is floating: all GPIO levels of the module are 1.8V and the output voltage of VDD_EXT is 1.8V. When the pin is connecting to GND: all GPIO levels of the module are 3.3V and the output voltage of VDD_EXT is 3.3V.

3 Recommended Footprint

3.1 Top and Bottom View

The following figures show top and bottom view of SIM7080G and SIM7022. There are some differences for footprint.

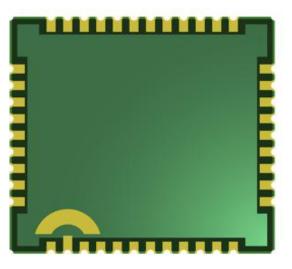


Figure 2: SIM7080G and SIM7022 top and bottom view

Figure 1 and Figure 2 are the effect diagrams of the module, for reference only. Please refer to the actual product for appearance.

3.2 Recommended Footprint

SIM7080G and SIM7022 can use the same recommended footprint design.

The recommended footprint design for SIM7080G and SIM7022 is shown as below.

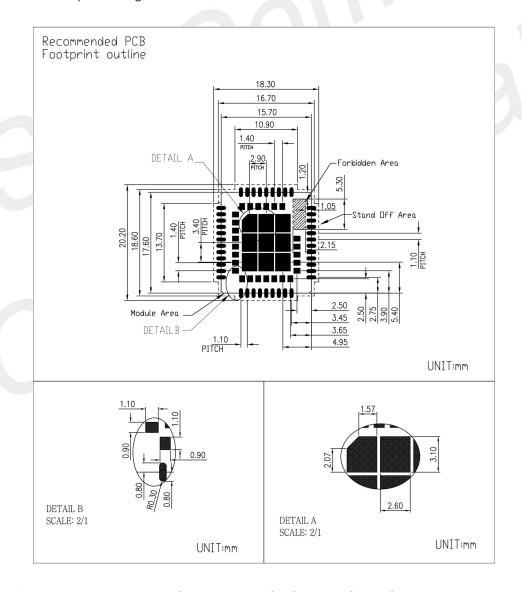


Figure 3: Recommended Stencil Design for SIM7080G and SIM7022 (Unit: mm)

www.simcom.com 13 / 35

3.3 Recommended Stencil Design

It is strongly recommended that SIM7080G and SIM7022 use their own the recommended stencil design.

The recommended stencil design for SIM7080G is shown as below.

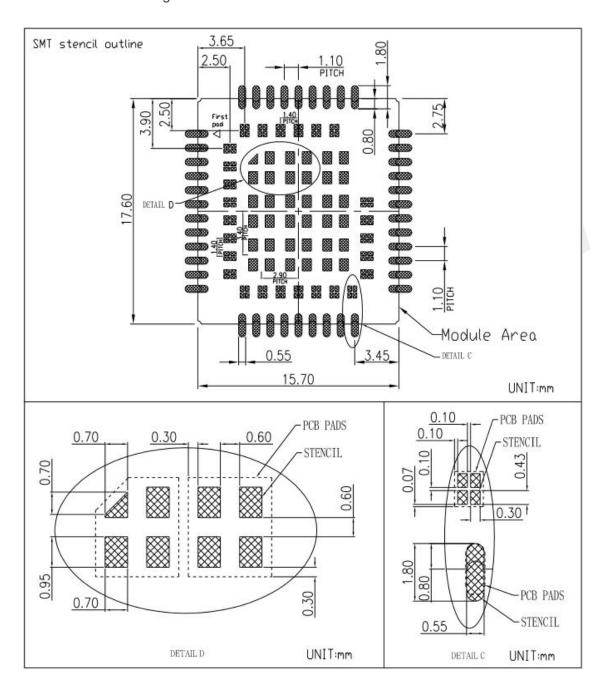


Figure 4: Recommended Stencil Design for SIM7080G (Unit: mm)

www.simcom.com 14 / 35

The recommended stencil design for SIM7022 is shown as below.

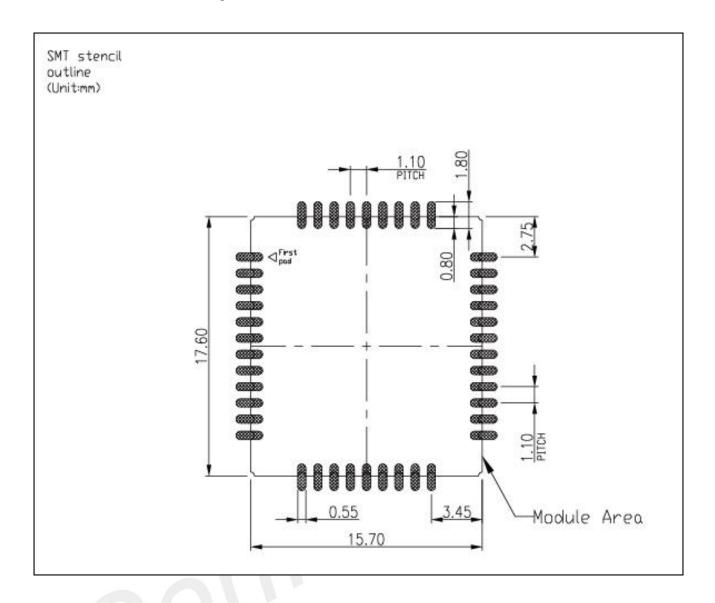


Figure 5: Recommended Stencil Design for SIM7022 (Unit: mm)

4 Hardware Reference Design

The chapter introduces compatible design between SIM7080G and SIM7022 on main functionalities.

4.1 Power Supply

The power supply pins of SIM7080G and SIM7022 include two VBAT pins (pin 34 and pin 35). VBAT pins directly supply the power to RF circuit and baseband circuit. Both VBAT pins of the module must be used together. The following figure is the reference design of the module VBAT power supply.

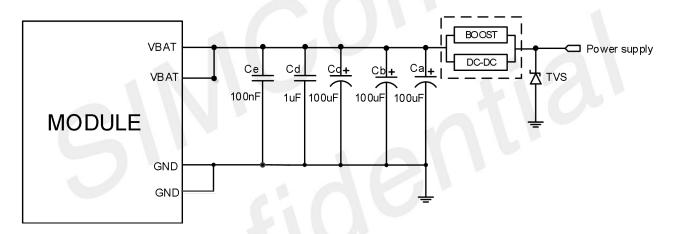


Figure 6: Power supply reference circuit

According to power supply type (battery or DC power), the reference design for power switching circuit in the above dashed box will be different. The details are illustrated in the table below.

Table 4: Power Supply Type and Power Switching Circuit Relationship

Power Supply Type	SIM7080G (VBAT=2.7~4.8V)	SIM7022 (VBAT=2.2~4.3V)
Li-SOC12 Battery (2.0~3.6V)	Boost	Boost
Li-MnO2 Battery (1.8V~3.0V)	Boost	Boost
DC Power Supply	DC-DC	DC-DC

The VBAT has different input power range for SIM7080G and SIM7022. Please refer to the following table.

16 / 35 www.simcom.com

Table 5: The differences for VBAT power range

Module	VB	AT power sup	VBAT power peak current	
modulo	Min	Typical	Max	MAX
SIM7080G	2.7	3.8	4.8	500mA
SIM7022	2.2	3.3	4.3	500mA

Power design for a module is important to its performance. The power supply of SIM7080G and SIM7022 should be able to provide sufficient current up to 500mA.

NOTE

For details information, please refer to each HD guide.

4.2 Power on/off and WAKEUP circuit

The 39 pin of SIM7080G is PWRKEY, but it is WAKEUP for SIM7022. SIM7080G can be turned on by driving the 39 pin to a low level. But the SIM7022 is automatically turned on after power on, without a PWERKEY button. The SIM7022 can be wakeup by driving the 39 pin to a low level.

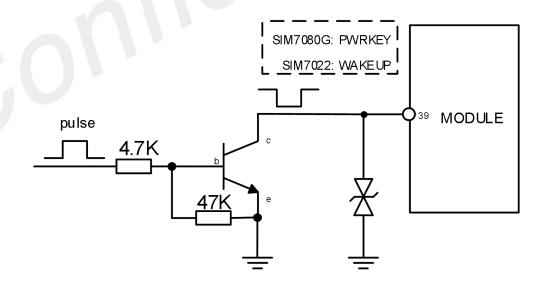


Figure 7: Power on/off and wakeup reference circuit

The different electrical parameters of 39 pin is show as below.

www.simcom.com 17 / 35

Table 6: 39 pin electrical parameters

Cymbol		SIM70)80G		 	SIM70	SIM7022	
Symbol	Min	Typical	Max	Unit	Min	Typical	Max	Unit
Ton	1	-	12.6	s	500	-	_	ms
V _{IN}	1.0	1.5	1.8	V	1.1	1.3	1.4	V
V _{IL}	-0.3	0	0.4	V	- -	-	0.3	V

For details information of the electrical parameters, please refer to each HD guide.

4.3 Reset Circuit

The 28 pin of SIM7080G is NC, but it is reset for SIM7022.

The SIM7022 can be reset by keeping the 28 pin low level for at least 50ms.

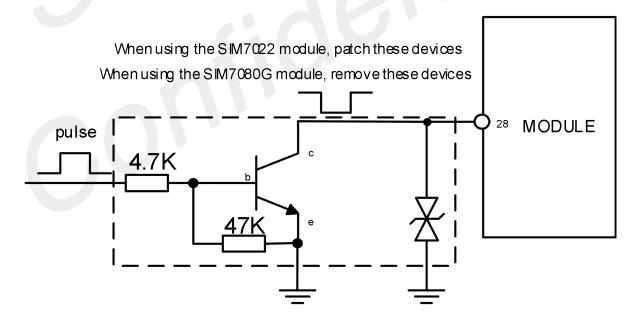


Figure 8: Reset reference circuit

The PWRKEY pin of SIM7080G has its own reset function. The reset time is determined by the internal timer (default is 12.6 seconds). After the PWRKEY is pulled low, the module will be reset after 12.6 seconds.

4.4 UART Interface

The module is as the DCE (Data Communication Equipment) and the client PC is as the DTE (Data Terminal Equipment). AT commands are executed through UART interface.

SIM7080G can provide 3 channels serial ports: one channel full-function serial port UART1, one channel DEBUG serial port UART2, one channel 2-wire serial port UART3. UART1 can be used for AT command communication; UART2 will output boot log during the system boot-up; UART3 will be configured GPIO after booting.

SIM7022 can provide 2 channels serial ports: one channel full-function serial port UART1, one channel DEBUG serial port UART0. UART1 can be used for AT command communication, firmware upgrade and calibration; UART0 can view the underlying log information for software debugging.

When the serial port of the module and serial port of MCU have the same voltage level, the serial port and GPIO of module can connect to the MCU directly. The reference design circuit is shown as following figure.

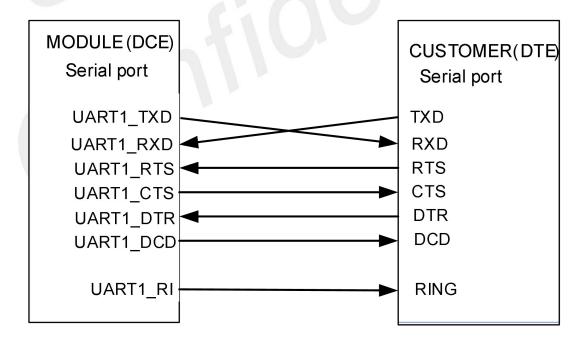


Figure 9: UART full modem circuit

www.simcom.com 19 / 35

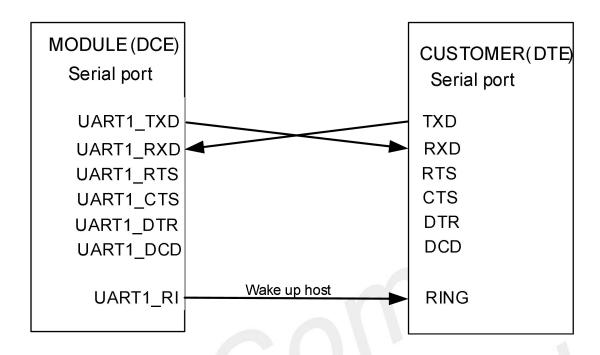


Figure 10: UART null modem circuit

When the serial port of MCU does not match the serial port of module, it is recommended to use voltage level translator to match the voltage level. The reference design circuit is shown as following figure.

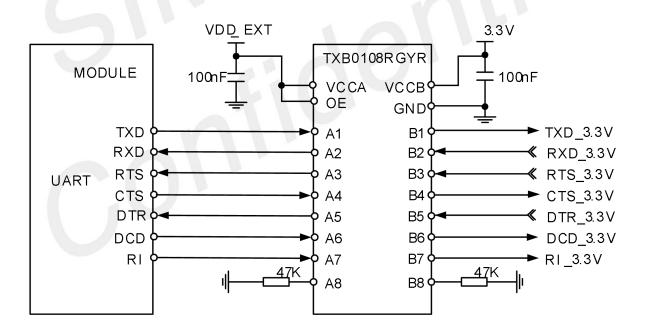


Figure 11: Reference circuit of level translator

NOTE

When it uses the level shifter IC, the pull up resistance on TXD_3.3V, RTS_3.3V, DCD_3.3V and RI_3.3V should not be less than $47K\Omega$.

www.simcom.com 20 / 35

4.5 USIM Interface

SIM7080G only supports 1.8V SIM Card, but SIM7022 can support 1.8V and 3.0V SIM card.

The pin assignment of SIM7080G USIM interface and SIM7022 USIM interface are compatible with each other. A compatible design for 6-pin USIM interface is shown in the figure below:

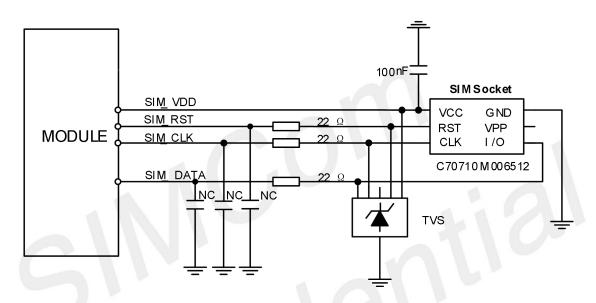


Figure 12: SIM interface reference circuit

SIM card signal could be interference by some high frequency signal, it is strongly recommended to follow these guidelines while designing:

- Add some TVS which parasitic capacitance should not exceed 50pF
- SIM card holder should be far away from GSM antenna
- SIM traces should keep away from RF lines, VBAT and high-speed signal lines, the traces should be as short as possible
- Keep SIM card holder's GND connect to main ground directly
- Shielding the SIM CLK to prevent the interference to other signals

4.6 USB Interface

SIM7080G provide a USB interface, but the SIM7022 don't provide a USB interface. If use the SIM7022 module, please disconnect the wire of USB. The reference design circuit is shown as following figure.

www.simcom.com 21 / 35

Figure 13: USB interface reference circuit

If use the SIM7080G module, patch these three 0R resistances, if use the SIM7022 module, please not patch these three resistances, make sure the SIM7022 pin 24,25,26 keep float.

4.7 Network Status Indication

The pin assignment of SIM7080G network status indication and SIM7022 network status indication are compatible with each other. The NETLIGHT pin is used to control Network Status LED, its reference circuit is shown in the following figure.

www.simcom.com 22 / 35

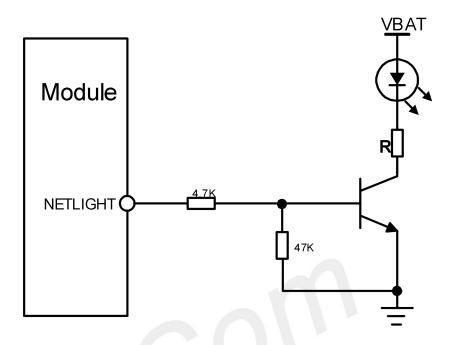


Figure 14: NETLIGHT reference circuit

The pin status of SIM7080G and SIM7022 is shown as following table.

Table 7: SIM7080G NETLIGHT pin status

NETLIGHT pin status	Module status
64ms ON, 800ms OFF No registered network	
64ms ON, 3000ms OFF Registered network (PS domain registration success)	
64ms ON, 300ms OFF	Data transmit (PPP dial-up state and use of data services such as internal TCP/FTP/HTTP)
OFF	Power off or PSM mode

Table 8: SIM7022 NETLIGHT pin status

NETLIGHT pin status	Module status
64ms ON, 800ms OFF	No registered network
64ms ON, 2000ms OFF	Registered network (PS domain registration success)
OFF	Power off or PSM mode

4.8 Audio Interface

SIM7080G provides a PCM interface for external codec, which can be used in master mode with short sync and 16 bits linear format, but SIM7022 provides GPIO interface instead of PCM.

www.simcom.com 23 / 35

The different function of SIM7080G and SIM7022 is shown as follows.

Table 9: The Differences overview

Cymphol	SIM7080G	SIM7022
Symbol	PIN name	PIN name
9	PCM_DIN	RESERVED
10	PCM_DOUT	воот
11	PCM_CLK	AON_GPIO
12	PCM_SYNC	WAKEUP

The following figure shows the external codec reference design.

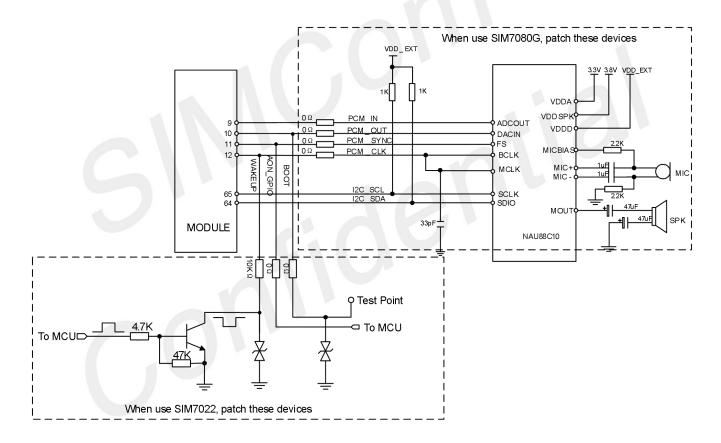


Figure 15: Audio codec reference circuit

4.9 I2C Interface

The pin 64 and pin 5 of SIM7080G is I2C, but SIM7022 don't have these pins. SIM7080G provides an I2C interface with clock rate up to 400 kbps. Its operation voltage is 1.8V. The following figure shows the I2C bus reference design.

www.simcom.com 24 / 35

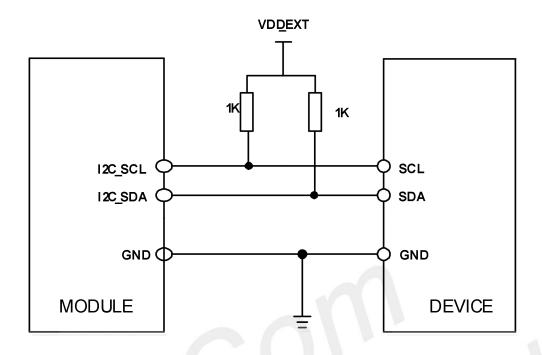


Figure 16: I2C reference circuit

4.10 ADC Interface

The pin assignment of SIM7080G ADC and SIM7022 ADC are compatible with each other.

They have different sampling scope. If the input voltage of ADC PIN exceeds its range, it is necessary to implement the resistance partial pressure on the hardware. The ADC electronic characteristics is shown as follows.

Table 10: The Differences overview

interfece	SIM7080G			SIM7022
interface	PIN name	Voltage range	PIN name	Voltage range
38	ADC	0~1.875V	ADC	0~3.3V

4.11 RFGRFC Interface

SIM7080G provides the GRFC function, but SIM7022 does not

SIM7080G provides a set of antenna GRFC dedicated signals lines. It can be used to control the antenna tuner to improve antenna performance.

The reference circuit is shown in the following figure:

www.simcom.com 25 / 35

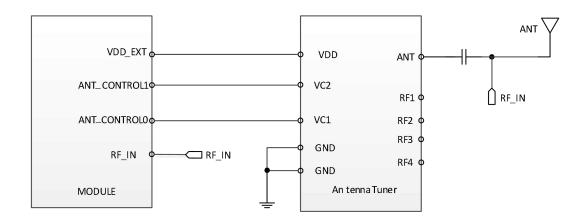


Figure 17: RFGRFC interface reference circuit

4.12 RF Interface

SIM7080G or SIM7022 provide a cellular antenna interface

Users should connect antennas to SIM7080G's antenna pads through micro-strip line or other types of RF trace and the trace impedance must be controlled in 50Ω . SIMCom recommends that the total insertion loss between the antenna pads and antennas should meet the following requirements:

Table 11: Trace loss

Frequency	Loss
700MHz-960MHz	<0.5dB
1710MHz-2170MHz	<0.9dB
2300MHz-2650MHz	<1.2dB

To facilitate the antenna tuning and certification test, a RF connector and an antenna matching circuit should be added. The following figure is the recommended circuit.

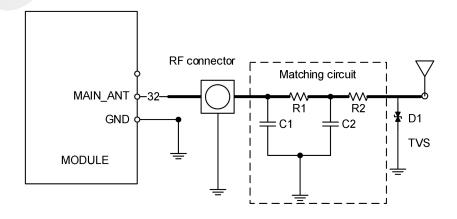


Figure 18: Antenna matching circuit (MAIN ANT)

www.simcom.com 26 / 35

In above figure, the components R1, C1, C2 and R2 are used for antenna matching, the values of components can only be achieved after the antenna tuning and usually provided by antenna vendor. By

default, the R1, R2 are 0Ω resistors, and the C1, C2 are reserved for tuning. The component D1 is a TVS

for ESD protection, and it is optional for users according to application environment.

The RF test connector is used for the conducted RF performance test, and should be placed as close as to the module's MAIN_ANT pin. The traces impedance between SIM7080G and antenna must be controlled in 50Ω .

Two TVS are recommended in the table below.

Table 12: Recommended TVS

Package	Part Number	Vender
0201	LXES03AAA1-154	Murata
0402	LXES15AAA1-153	Murata

4.13 GNSS

The SIM7080G contains GNSS, but SIM7022 does not.

SIM7080G merges GNSS (GPS/GLONASS/BD) satellite and network information to provide a high-availability solution that offers industry-leading accuracy and performance. This solution performs well, even in very challenging environmental conditions where conventional GNSS receivers fail, and provides a platform to enable wireless operators to address both location-based services and emergency mandates.

4.13.1 GNSS Technical specification

• Tracking sensitivity: -159 dBm (GPS) / -156 dBm (GLONASS) /TBD (BD)

Cold-start sensitivity: -148.5 dBm

Accuracy (Open Sky): 0.74 m (CEP50)

TTFF (Open Sky): Hot start < 1 s, Cold start < 30 s

Receiver Type: 16-channel, C/A Code
GNSS L1 Frequency: 1575.42±1.023MHz

GLONASS: 1597.5~1605.8 MHz
 BD: 1559.05~1563.14 MHz
 Galileo L1: 1575.42±1.023MHz

Update rate: Default 1 Hz

GNSS data format: NMEA-0183

www.simcom.com 27 / 35

- GNSS Current consumption : 16 mA (GSM/LTE Sleep, in total on VBAT pins)
- GNSS antenna: Passive/Active antenna

If the antenna is active type, the power should be given by main board because there is no power supply on the GNSS antenna pad. If the antenna is passive, it is suggested that the external LNA should be used.

4.13.2 GNSS Application Guide

Users can adopt an active antenna or a passive antenna to SIM7080G. If using a passive antenna, an external LNA is a must to get better performance. The following figures are the reference circuits.

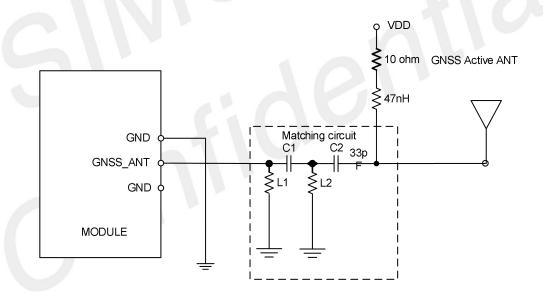


Figure 19: Active antenna circuit

www.simcom.com 28 / 35

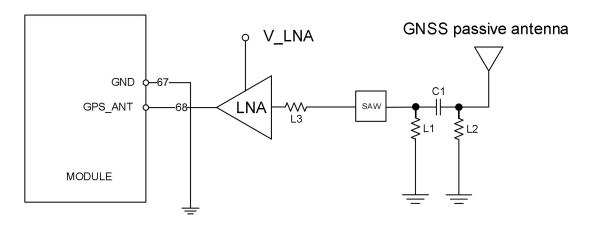


Figure 20: Passive antenna circuit (Default)

In above figures, the components C1, L1 and L2 are used for antenna matching. Usually, the values of the components can only be achieved after antenna tuning and usually provided by antenna vendor. C2 is used for DC blocking. L3 is the matching component of the external LNA, and the value of L3 is determined by the LNA characteristic and PCB layout. Both VDD of active antenna and V_LNA need external power supplies which should be considered according to active antenna and LNA characteristic. LDO/DCDC is recommended to get lower current consuming by shutting down active antennas and LNA when GNSS is not working.

GNSS can be tested by NMEA port. NMEA sentences can be obtained through UART or USB automatically. NMEA sentences include GSV, GGA, RMC, GSA, and VTG. Before using GNSS, user should configure SIM7080G in proper operating mode by AT command. Please refer to related documents for details. SIM7080G can also get position location information through AT directly.

NOTE

- 1. GNSS is closed by default and can be started by "AT+CGNSPWR=1". The AT command has two parameters, the first is on/off, and the second is GNSS mode. Default mode is standalone mode. AGPS mode needs more support from the mobile telecommunication network. Please refer to document [21] for more details.
- 2. If the passive antenna is used, put the LNA close to the antenna.
- 3. Make sure there are no noise signals around GNSS antenna.

www.simcom.com 29 / 35

5 Appendix

5.1 Design check list

Table 13: Schematic Check List

NO.	Items		
1	Insure the supply voltage for VBAT is within the range of 2.7V~4.8V.		
2	Insure the maximum supply current for VBAT is above its consumption when it is maximum power emission.		
3	Insure the capacitor for VBAT is meet its request, in order to avoid the voltage drop exceed 200mV. And the voltage never dropped below 2.7V.		
4	Insure the input signal for PWRKEY pin meet its electrical level match. It recommended use BJT to shift its level.		
5	Insure the net connections of UART be correctness according to signal direction. Insure the signal for UART pins meet its electrical level match. It recommended use BJT or level shift IC to shift its level.		
6	Insure USB port had used TVS to protect signal. And the junction capacity of TVS for DP/DM must be less than 3pf.		
7	Insure SIM card signal had used TVS to protect. And the junction capacity of TVS must be less than 50pf.		
8	The power supply of the active antenna should be controlled and closed.		
9	Insure I2C signal had used resistors 1Kohm pull up to VDD_EXT if used.		
10	The electrical level of all GPIOs is 1.8V. Insure the signal for GPIO pins meet its electrical level match.		
11	The input range of ADC is 0V~1.875V. Insure the input signal never exceed its range.		
12	User must pull up DTR when module enters into sleep mode. Insure DTR can be controlled by host.		
13	Suggesting to reserve test ports for VDD_EXT and BOOT_CFG. BOOT_CFG should keep open before boot up.		
14	LTE main ANT should Keep TVS to prevent ESD destroyed. And the TVS should be Low junction capacitance.		
15	LTE main ANT should have a PI type matching to debug antenna		

www.simcom.com 30 / 35

Table 14: PCB Layout Check List

NO.	Items		
1	Insure the capacitor placement for VBAT be near module pin.		
2	Insure VBAT trace width be greater than 2mm. If NB only, insure VBAT trace width be greater than 1mm. And the VIA number must be enough for getting through the current.		
3	Insure the return path GND of the power supply is good. Insure the connectivity between module GND and mother board GND is good.		
4	Insure PCM trance is protected by GND, and keep it far from interference source, such as power supply trace, USB trace, RF trace and so on.		
5	Insure USB trance is protected by GND, and keep it far from interference source, such as power supply trace, RF trace and so on. Insure DM/DP trace is differential routing, and differential impedance is 90 ohm.		
6	Insure ADC trance is protected by GND.		
7	Insure SIM card signal trance is protected by GND. Especially SIM_CLK must be protected alone. And avoid signal trace branched Routing.		
8	Insure TVS avoid bypass. The trace must go through TVS pad first, and then arrived module pad.		
9	There should be enough ground around the RF line. RF lines Routing prohibit right angles and sharp angles, trying to trace circular or obtuse angle line.		
10	The RF line reference GND should be complete. And avoid high speed lines crossing below it.		
11	the GND side of the RF output pin should be not hot welding disk		
12	The routing which is RF output PIN to antenna should be isolated from other high-speed lines. And the routing should be 50Ω impedance control.		

www.simcom.com 31 / 35

5.2 Related Documents

Table 15: Related Documents

NO.	Title	Description
[1]	SIM7022 Hardware Design	SIM7022 HD document
[2]	SIM7080G Hardware Design	SIM7080G HD document
[3]	SIM7080G AT Command Manual	AT Command Manual
[4]	SIM7022 AT Command Manual	AT Command Manual

www.simcom.com 32 / 35

5.3 Terms and Abbreviations

Table 16: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
ARP	Antenna Reference Point
BER	Bit Error Rate
BD	BeiDou
BTS	Base Transceiver Station
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
DAM	Downloadable Application Module
DPO	Dynamic Power Optimization
DRX	Discontinuous Reception
e-DRX	Extended Discontinuous Reception
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
EVDO	Evolution Data Only
FCC	Federal Communications Commission (U.S.)
FD	SIM fix dialing phonebook
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global Standard for Mobile Communications
HR	Half Rate

www.simcom.com 33 / 35

HSPA	High Speed Packet Access
I2C	Inter-Integrated Circuit
IMEI	International Mobile Equipment Identity
LTE	Long Term Evolution
MO	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
NMEA	National Marine Electronics Association
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PCS	Personal Communication System, also referred to as GSM 1900
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
SIM	Subscriber Identification Module
SMS	Short Message Service
SMPS	Switched-mode power supply
TDMA	Time Division Multiple Access
TE	Terminal Equipment, also referred to as DTE
TX	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
VSWR	Voltage Standing Wave Ratio
SM	SIM phonebook
NC	Not connect
EDGE	Enhanced data rates for GSM evolution
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
ZIF	Zero intermediate frequency
WCDMA	Wideband Code Division Multiple Access
VCTCXO	Voltage control temperature-compensated crystal oscillator
SIM	Universal subscriber identity module
UMTS	Universal mobile telecommunications system
UART	Universal asynchronous receiver transmitter
PSM	Power saving mode
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook
NC	Not connect
NO	NOT COMMECT

www.simcom.com 34 / 35

5.4 Safety Caution

Table 17: Safety Caution

Marks	Requirements
*	When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive and not operate normally due to RF energy interference.
×	Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forgetting to think much of these instructions may impact the flight safety, or offend local legal action, or both.
	Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.
	Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.
	Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.
sos	GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, especially with a mobile fee or an invalid SIM card. While you are in this condition and need emergent help, please remember to use emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call. Also, some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

www.simcom.com 35 / 35