
Molex (Montreal-Suzhou) General Overview

April 30, 2020

Molex RF/Microwave Business Unit

• MXGDL – Guadalajara, Mexico

"Vision Statement"

RFMS' vision is to become a global leader as a RF/Microwave products provider by bringing greater value to its customers through highly engineered, innovative RF sub-assemblies, <u>components</u> and interconnect solutions.

Molex's SDP Telecom Operational Capacity

Montreal

3

12,000 sq. foot Facility Advanced R&D Facility

Suzhou

80,000 (+20,000) sq. foot Facility Low-Cost High Volume Manufacturing Site

Global Supply Chain

Components	3+ Million units / Month
Site Solution	100k units /
Products	Month
Radio-Link	100k units /
Products	Month

Product Categories

Molex Confidential Information © 2016 Molex – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Components

Ferrite Devices

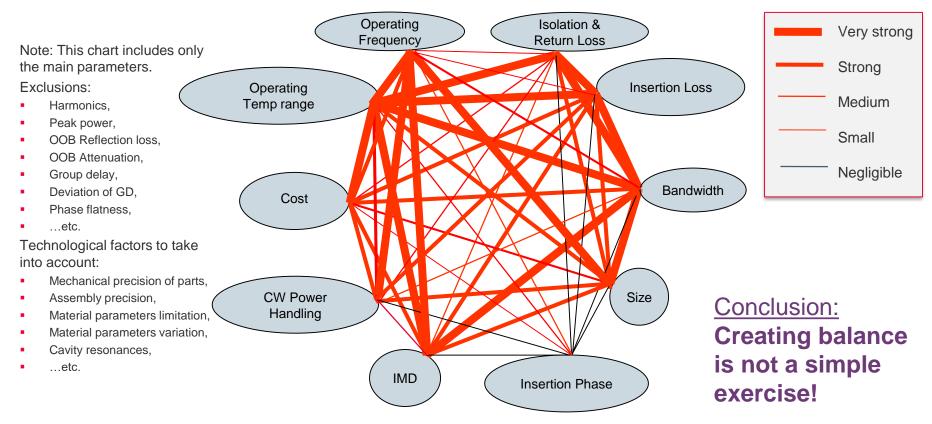
Components

Ferrite Devices (Circulators/Isolators)

- Frequency Range : 350 MHz to 40 GHz
- Single, Double or Multi-Junction Configuration
- Low-Loss & Low PIM Performance
- Proprietary Ferrite Material Technology
- Flanged waveguide variants part of our Radio Backhaul Portfolio

Industry Leader in high power Base Station circulators/isolators with over 2 M assemblies manufactured every month

Molex Confidential Information


6

Isolator/Circulator Evolving Roadmap

Relationship Between Main Parameters

Molex Confidential Information

8

Costs and Cost Drivers

By far, the greatest influence on potential cost savings is:

Customer awarded volumes

- Greater volumes allow for transition to automated fabrication, reducing human touch time and facilitating increased efficient yields
- Small volume machined bodies can evolve to medium volume MIM variants or high volume stamped alternatives (all only cost justifiable when volumes increase)

 Greater economies of scale from suppliers for all internal parts used (multi-use or unique components). Leverage to negotiate lower material costs rolls up to total COG reduction

Costs and Cost Drivers (continued)

- The second largest cost driver is the number of concurrent technical requirements that all have to be balanced
 - For a given body/footprint size, over a defined operating frequency range and with a defined thermal operating range, if a designer only has to focus on optimizing the solution to achieve the best insertion loss possible, it's relatively easy
 - Several low cost components can be used to in order to achieve the desired performance
 - When the same designer as asked in addition to the same mechanical limitations, frequency range, in addition to IL he also needs to optimize for IMD, IS&RL both in-band and out of band, plus harmonics concurrently while the thermal range is further increased, his challenge becomes exponentially more complex

10

- To potentially achieve all concurrent requirements, the designer must utilize more complex internal components, with tighter mechanical tolerances, heightened flatness requirements, often made from far more expensive raw materials with lower yields, to obtain requested results
- More specs also require more time for both tuning and Quality Department verification (time = cost)

Variable Cost Contribution Ranking

1. Housing body and cover

- SMT is always more expensive than an equivalent size drop-in alternative; yet RAN producers are all shifting to predominantly SMT
- Proportionally smaller is not proportionally less expensive; it can be more expensive due to the greater precision required to be able to achieve the equivalent results in the smaller size

2. Ferrites

- Second largest contributor to overall cost are the ferrites
- Pure ferrites are always less expensive than Ferrite Dielectric Assemblies (FDAs which include an additional dielectric ring) however as footprint requirements shrink FDAs become a necessary component

3. Direct labor; the third major contributor to total variable costs in mass-production



11

- Learning curve is lengthy to become efficient in manual assembly and tuning (6-8 weeks); switching to automated assembly or tuning requires capital investment approvals, and a volume based business case to justify. Molex remains committed to increasing its Automation quotient
- Employee turnover reduces short-term yield and increases "real" unit cost; thankfully SDP & Molex has successfully taken initiatives to reduce DL turnover in Suzhou

Molex Confidential Information

SDP Automation Line Architecture

Notes:

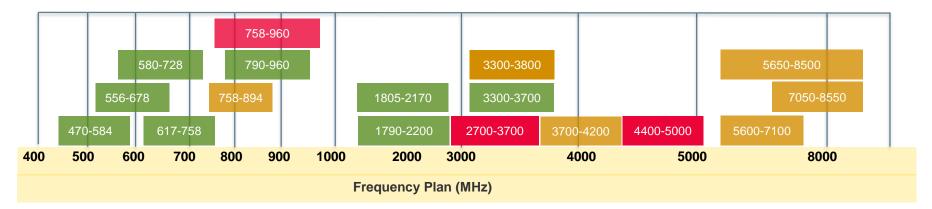
- Automation manufacturing process map for Isolator / circulator;
- Automation machine / line reserve hardware and software communication interface for MES system connection;
 - Products related information collecting by automation machine / line to auto-upload to MES system core algorithm for analysis, manufacturing report generating & status monitoring;
 - Automation machine operation status, preventive maintenance, machine related statistical data collecting and analysis;
 - MES system communicates with ERP (SAP) system to exchange production, material, planning related

Molex Confidentianformation:

.

Ongoing R&D Initiatives on Isolators / Circulators

- Developing Wide-Band Solutions
- Evolution of SMT circulator for 5G
- Integrated Isolator/Circulator Solutions
- High Frequency and MM Wave SMT Circulator


Molex Confidential Information

Wide Band Solutions

Existing Frequency Coverage of WB and Dual-Band Solutions

- Devices are typically more than 15 % bandwidth
- They mostly cover two or more LTE/5G bands

Molex Confidential Information

Performance of WB Solutions

Frequency Band (MHz)	Bandwidth (%)	Size W×L×H or Dia × H	Insertion Loss (dB)	Isolation (dB)	Return Loss (dB)	Power Handling (W) (1)	Peak Power (W)	Temperature Range (°C)
470-584	21.6	1.25"x1.25"x 9mm	0.65 / 0.5 typ	15/18 typical	15/18 typical	100	400	-40 to 90
790-960	19.4	1"x1"x 9mm	0.35	18	18	250	2500	-40 to 105
729-894	20.3	1.25"x1.5"x 9mm	0.3	20	20	220/150	1200	-40 to 90
1790-2200	20.5	1.25"x1.5"x 10mm	0.35/0.3 typ	20/22 typ	20/22 typ	300	1500	-40 to 125
617-758	20.5	1.25"x1.5"x 9mm	0.35	18/20 typ	18/20 typ	150	1500	-40 to 105
3300-3800	12	Ø10.0mm x6.5mm	0.35	19	19	20	200	-40 to 105
3300-3800	14	Ø7mm x 4mm	0.6	16	16	15	30	-40 to 105
4400-5000	12.76	Ø7mm x 4mm	0.6	16	16	15	30	-40 to 105
3700-4200	12.65	Ø10.0mm x 6.5mm	0.35	20	20	20	200	-40 to 105
5600-7100	23.62	Ø12.7mmx 6mm	0.5/0.4 typ	18/19 typ	18/19 typ	10/10	TBD (3)	-40 to 85
7050-8550	19.23	Ø12.7mmx 6mm	0.5/0.4 typ	18/19 typ	18/19 typ	10/10	TBD (3)	-40 to 85
5650-8500	41.1	Ø12.7mm x 6mm	0.6/0.5 typ	17/18 typ	17/18 typ	20/10	TBD (3)	-40 to 85

1. For circulator: forward power specified. For isolators: forward power/reverse power

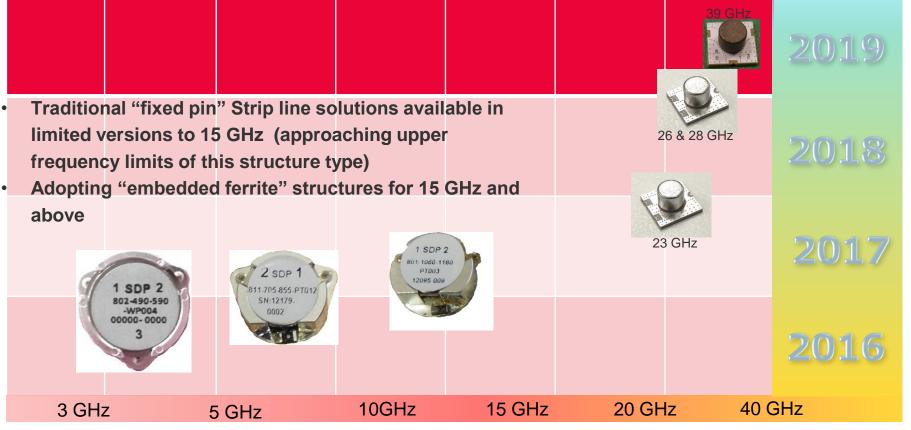
- 2. Floating pin solution available at this time. Fixed pin can be developed.
- 3. No information available at this time

Molex Confidential Information

16 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

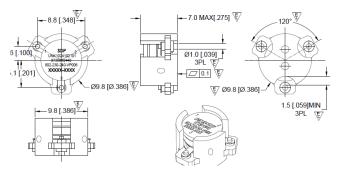
In Production

Samples sent to customer


In Development

Evolution of SMT Circulator for 5G

SMT Isolators for 5G bands

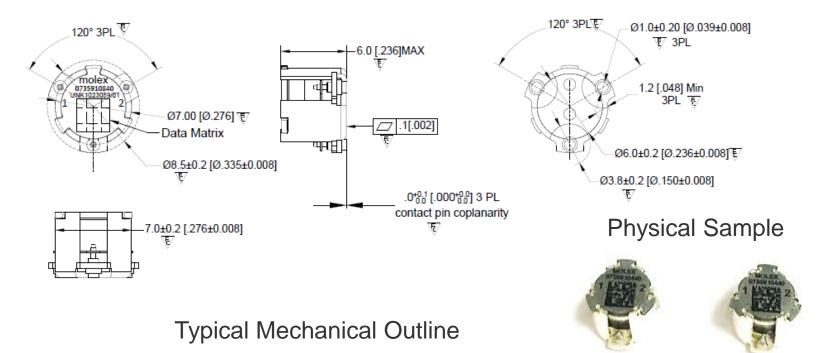


Molex Confidential Information

18 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

molex

10mm Circulator Format


	Start Freq. (MHz)	Stop Freq. (MHz)	Return Loss (dB)	lsolation (dB)	Insertion Loss (dB)	IMD (dBc)	Temp Range (°C)
5G sub 6 GHz Europe	3600	3800	22	21	0.25	-60	-40~105
5G sub 6 GHz China	3400	3600	22	21	0.25	-60	-40~105
5G sub 6 GHz China	3400	3800	20	20	0.3	-60	-40~105
5G sub 6 GHz China	4400	4500	22	21	0.25	-60	-40~105
5G sub 6 GHz China	4800	5000	22	21	0.25	-60	-40~105
5G sub 6 GHz Korea	3400	3700	21	20	0.25	-60	-40~105
AAS B40	2300	2400	22	21	0.25	-60	-40~105
AAS B41	2496	2690	20	20	0.3	-60	-40~105

Molex Confidential Information

Production Development

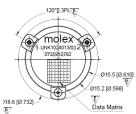
7mm Circulator

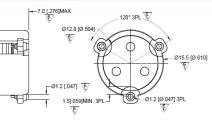
Small size circulator

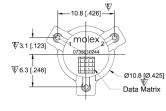
Molex Confidential Information

7mm Circulator Electrical Performance

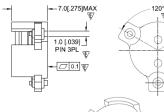
 Major Bands between 2.3 GHz to 6.0 GHz are available or under development

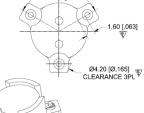

	Start Freq. (MHz)	Stop Freq (MHz)	Return Loss (dB)	Isolation (dB)	Insertion Loss (dB)	IMD (dBc)	Temp Range (°C)
5G sub 6 GHz Europe	3600	3800	20	20	0.35	-60	-40~105
5G sub 6 GHz US	3550	3700	20	20	0.35	-60	-40~105
5G sub 6 GHz China	3400	3600	20	20	0.35	-60	-40~105
5G sub 6 GHz China	3400	3800	18	18	0.4	-60	-40~105
5G sub 6 GHz China	4400	4500	20	20	0.35	-60	-40~105
5G sub 6 GHz China	4800	5000	20	20	0.35	-60	-40~105
5G sub 6 GHz Korea	3400	3700	20	20	0.35	-60	-40~105
AAS B40	2300	2400	20	20	0.35	-60	-40~105
AAS B41	2496	2690	18	18	0.4	-60	-40~105


Molex Confidential Information


Production Development

AAS WB Circulators


Size (mm)	Start Freq. (MHz)	Stop Freq. (MHz)	Return Loss (dB)	Isolation (dB)	Insertion Loss (dB)	IMD (dBc)	Temp Range (°C)
	3300	3800	16	16	0.6	-60 (2*1W)	-40~105
7	4400	5000	16	16	0.6	-60 (2*1W)	-40~105
	3400	3800	16	16	0.5	-65 (2*2.5W)	-40~100
8	3400	3800	17	17	0.4	-65 (2*2.5W)	-40~100
10	3400	3800	20	20	0.3	-60 (2*5W)	-40~105
10	4400	5000	20	20	0.35	-60 (2*5W)	-40~105
	2300	2700	18	18	0.4	-62 (2*5W)	-40~105
11	3400	3800	20	20	0.3	-62 (2*5W)	-40~105
	4400	5000	20	20	0.4	-62 (2*5W)	-40~105
15	2300	2700	21	21	0.3	-70 (2*5W)	-40~105
	3400	3800	21	21	0.3	-70 (2*5W)	-40~105
	4400	5000	21	21	0.4	-70 (2*5W)	-40~105




1

Production

Development

Molex Confidential Information

Integrated Isolator/Circulator

Integrated Solutions General Advantages

Flexibility

 Concept can be adapted to virtually any existing isolator design

Electrical Performance

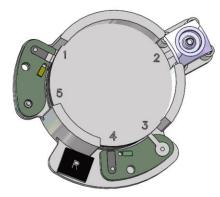
- Reduced overall IL (compared against discrete components)
- RL improves versus discrete components
- Matching challenges of sequential discrete components eliminated

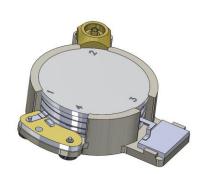
Reduced Land Pattern

 Improved space utilization allowing for compression of board design

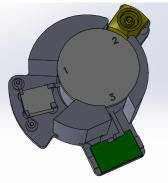
Cost Saving

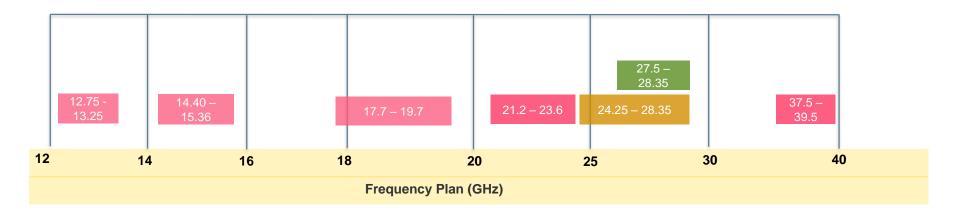
- Can be less expensive than separate isolator and other components,
- Less components to manage on the radio assembly BOM

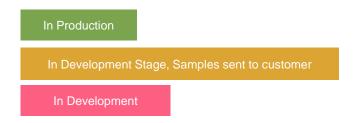

Molex Confidential Information


R&D Initiatives

Integrated Solutions


Variety of connectorized SMT Isolators/Circulators with Directional Coupler(s) and Electronic Switch


Molex Confidential Information © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.



High Frequency and mm WAVE SMT Products

Existing Frequency Coverage

Molex Confidential Information

R&D Initiatives

SMT mm Wave Circulators

Operating Frequency Range, GHz	Insertion Loss, dB, Max	Isolation, dB, Min	Return Loss, dB, Min	Sample Shipped or not	Trial Run Finished or not
21.20 to 23.60	1.0	18	18	Yes	No
24.24 to 28.35	1.0	17	17	Yes	No
27.5 to 28.35	1.0	16	17	Yes	Yes
37.5 to 39.5	1.2	15	15	Yes	No

TEMPERATURE RANGE-40 to +85°CPOWER (CW)up to 5 WSize7.0×7.0×3.5mm

Molex Confidential Information

