

BLUEGIGA I/O PROFILE

iWRAP APPLICATION NOTE

Wednesday, 22 February 2012

Version 1.2

Bluegiga Technologies Oy

Copyright © 2000-2012 Bluegiga Technologies

All rights reserved.

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications
detailed here at any time without notice and does not make any commitment to update the information
contained here. Bluegiga’s products are not authorized for use as critical components in life support devices
or systems.

The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga
Technologies.

The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies.
All other trademarks listed herein are owned by their respective owners.

Bluegiga Technologies Oy

VERSION HISTORY

Version Comment

1.2 Fixed several response codes

1.1 Fixed wrong packet length in ”ADC set event interval” event

1.0 First version

Bluegiga Technologies Oy

TABLE OF CONTENTS

1 Introduction ..5

2 iWRAP firmware overview ...6

3 Using BGIO with iWRAP ...8

3.1 Configuration ...8

3.1.1 BGIO Sensor ...8

3.1.2 BGIO Host ...8

3.2 Service discovery ...8

3.3 Connection establishment ...9

3.4 Connection termination ..9

3.5 General BGIO information .. 10

3.5.1 BGIO protocol .. 10

3.5.2 ADC read ... 11

3.5.3 ADC set event interval ... 13

3.5.4 PIO read ... 15

3.5.5 PIO write .. 16

3.5.6 PIO set event ... 17

3.5.7 PIO get direction .. 18

3.5.8 PIO set direction .. 19

3.5.9 PIO get bias ... 20

3.5.10 PIO set bias.. 21

3.5.11 Power saving.. 22

4 Contact Information .. 23

Bluegiga Technologies Oy

Page 5 of 23

1 Introduction

This application note discusses Bluegiga I/O (BGIO) Profile’s advantages and how the profiles can be utilized.
Also practical examples are given how the BGIO can be used with the iWRAP firmware.

Bluegiga I/O profile is a proprietary profile which main purpose is to allow reading and setting of WT modules
I/Os remotely over Bluetooth connection. This makes possible to build sensors which do not have host
controller but instead only WT module and sensor component which can be for example a temperature meter.

BGIO defines two roles, that of a Sensor and Host:

 BGIO Sensor is the device who’s GPIOs and/or AIOs are connected to sensors

 BGIO Host is the device which receives the measurements sent by the BGIO Sensor

BGIO

BGIO

Temperature sensor

(Analog IO)

•Interval based update from device

or

• Host polling updates

•Event based update from device

or

• Host polling updates

BGIO Host

BGIO Sensor

BGIO Sensor

Magnetic Switch
(Digital IO)

Bluegiga Technologies Oy

Page 6 of 23

2 iWRAP firmware overview

iWRAP is an embedded firmware running entirely on the RISC processor of WT12, WT12 and WT32 modules.
It implements the full Bluetooth protocol stack and many Bluetooth profiles as well. All software layers,
including application software, run on the internal RISC processor in a protected user software execution
environment known as a Virtual Machine (VM).

The host system can interface to iWRAP firmware through one or more physical interfaces, which are also
shown in the figure below. The most common interfacing is done through the UART interface by using the
ASCII commands that iWRAP firmware supports. With these ASCII commands, the host can access Bluetooth
functionality without paying any attention to the complexity, which lies in the Bluetooth protocol stack. GPIO
interface can be used for event monitoring and command execution. PCM, SPDIF, I2S or analog interfaces
are available for audio. The available interfaces depend on the used hardware.

The user can write application code to the host processor to control iWRAP firmware using ASCII commands
or GPIO events. In this way, it is easy to develop Bluetooth enabled applications.

On WT32 there is an extra DSP processor available for data/audio processing.

Host Controller Interface

L2CAP / eL2CAP

RFCOMM

SDP Audio

iWRAP

Link Manager

Baseband

Radio

UART / USB

GPIO / AIO

PCM / I
2
S / SPDIF

Analogue

Host + application

iWRAP

Hardware

Figure 1: iWRAP Stack

Bluegiga Technologies Oy

Page 7 of 23

In the figure above, a WRAP THOR Bluetooth module with iWRAP firmware could be connected to a host
system for example through the UART interface. The options are:

 If the host system has a processor, software can be used to control iWRAP by using ASCII based
commands or GPIO events.

 If there is no need to control iWRAP, or the host system does not need a processor, iWRAP can be
configured to be totally transparent and autonomous, in which case it only accepts connections or
automatically opens them.

 GPIO lines that WRAP THOR modules offer can also be used together with iWRAP to achieve
additional functionality, such as Carrier Detect or DTR signaling.

 Audio interfaces can be used to transmit audio over a Bluetooth link.

Bluegiga Technologies Oy

Page 8 of 23

3 Using BGIO with iWRAP

This chapter instructs the BGIO usage and configuration with the iWRAP firmware.

3.1 Configuration

3.1.1 BGIO Sensor

BGIO Sensor is enabled with command “SET PROFILE BGIO {service_name}”

service_name This parameter configures user friendly description of the device.
Neither special characters nor white spaces are allowed. Service
name ON enables the profile with the default name.

A reset is needed to for the BGIO profile to become active.

Below is an example how to enable BGIO Sensor mode.

SET PROFILE BGIO ON

RESET

3.1.2 BGIO Host

BGIO Host doesn’t require any pre-configurations to be made.

3.2 Service discovery

Bluetooth technology enables wireless service discovery, so you can find out the capabilities the remote
device supports. Wireless service discovery uses the Bluetooth Service Discovery Profile (SDP).

With iWRAP the service discovery is performed with command: “SDP {bd_addr} {uuid}”.

bd_addr Bluetooth device address of the remote device.

uuid Universally unique identifier. Refers to the Bluetooth profile one
wants to discover. For BGIO the uuid is af5c7d47-350b-45f6-
bdf6-b403441edb77.

Below is an example how to perform a service discovery for BGIO Sensor device.

SDP 00:07:80:93:0c:aa af5c7d47-350b-45f6-bdf6-b403441edb77

SDP 00:07:80:93:0c:aa < I SERVICENAME S "Bluegiga IO" > < I PROTOCOLDESCRIPTORLIST < < U
L2CAP > < U RFCOMM I 05 > > >

SDP

Bluegiga IO = Service name

05 = RFCOMM channel for BGIO

Bluegiga Technologies Oy

Page 9 of 23

3.3 Connection establishment

To create BGIO connection to BGIO Sensor the BGIO Host needs to open connection using UUID af5c7d47-
350b-45f6-bdf6-b403441edb77.

If the host device is iWRAP connection can be opened with CALL command:

“CALL {bd_addr} af5c7d47-350b-45f6-bdf6-b403441edb77 RFCOMM”

bd_addr Bluetooth device address of the device.

If connection establishment was successful you should receive CONNECT event:

“CONNECT {link_id} RFCOMM {channel} {bd_addr}”

 link_id Local identifier for connection

 channel Service channel on the remote device where connection was made

 bd_addr Bluetooth device address of the device.

CALL 00:07:80:ff:ff:ff af5c7d47-350b-45f6-bdf6-b403441edb77 RFCOMM

CONNECT 0 RFCOMM 1 00:07:80:ff:ff:ff

3.4 Connection termination

Closing connection to the BGIO Sensor can be done by just closing the Bluetooth connection. If you are using
iWRAP as the BGIO Host device you can do this with iWRAP command “CLOSE {link_id}”

link_id Numeric connection identified

BGIO connection termination.

CLOSE 0

NO CARRIER 0 ERROR 0

Bluegiga Technologies Oy

Page 10 of 23

3.5 General BGIO information

This chapter contains general information and tips about the iWRAP and BGIO profile for the implementers.

3.5.1 BGIO protocol

BGIO uses binary protocol which allows data transactions to be as short as possible allowing more aggressive
power saving methods to be used. There are three types of packets used in BGIO profile. Command packets
are used by the Host to control the Sensor. Every command packet results a return packet sent by the Sensor
back to the Host. Additionally there are event packets which can be sent by the Sensor if it is configured to do
so.

Byte Function Explanation

0 Packet Type 0x00 command

0x01 return

0x02 event

1 Packet Length Combined length of “Command id” and
“Command data” bytes

2 Command id 0x00 ADC read

0x01 Reserved

0x02 ADC set event interval

0x03 PIO read

0x04 PIO write

0x05 PIO set event

0x06 PIO get direction

0x07 PIO set direction

0x08 PIO get bias

0x09 PIO set bias

3- Command data Command specific data

Table 1: BGIO protocol syntax table

Bluegiga Technologies Oy

Page 11 of 23

3.5.2 ADC read

Command ADC read gets readings from defined ADCs. Essentially does the same as ADC set event
interval but measurement events from each ADC come only once at the time the command is received by
BGIO Sensor.

Synopsis:

0x00 0x02 0x00 [source_mask]

Description:

source_mask 8bit Bit mask describing ADC from which a reading is required. For ADCs 1 and
2 you would use mask 0x03

Response:

0x01 0x02 0x00 [Error_code] Return packet (ACK)

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

Events:

{ 0x02 0x03 0x00 [8bit source_id] [value] }

{ 0x02 0x03 0x00 [8bit source_id] [value] }

.

.

.

Reading from 1st ADC defined by source_mask

Reading from 2nd ADC defined by source_mask

etc.

Description:

source_id 8bit Bit mask describing (single) ADC from which measurement was read

Bluegiga Technologies Oy

Page 12 of 23

value 8bit reading

Bluegiga Technologies Oy

Page 13 of 23

3.5.3 ADC set event interval

Command ADC set event interval sets how often updated measurement information is sent by the Sensor to
the Host from defined ADCs.

Synopsis:

0x00 0x06 0x02 [source_mask] [interval]

Description:

source_mask

interval

8bit Bit mask describing ADC from which a reading is required

32bit value describing the interval between measurement updates

Response:

0x01 0x02 0x02 [Error_code] Return packet (ACK)

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

Events:

{ 0x02 0x03 0x02 [source_id] [value] }

{ 0x02 0x03 0x02 [source_id] [value] }

.

.

.

Reading from 1st ADC defined by source_mask

Reading from 2nd ADC defined by source_mask

etc.

Description:

source_id 8bit Bit mask describing (single) ADC from which measurement was read

Bluegiga Technologies Oy

Page 14 of 23

value 8bit reading

Bluegiga Technologies Oy

Page 15 of 23

3.5.4 PIO read

Command PIO read gets status of defined remote digital GPIOs.

Synopsis:

0x00 0x03 0x03 [source_mask]

Description:

source_mask 16bit Bit mask describing PIOs from which a reading is required

Response:

0x01 0x04 0x03 [Error_code] [value] Return packet with PIO statuses from PIOs defined
by source_mask

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

value 16bit reading

Bluegiga Technologies Oy

Page 16 of 23

3.5.5 PIO write

Command PIO write sets status of defined remote digital GPIOs.

Synopsis:

0x00 0x05 0x04 [source_mask] [status]

Description:

source_mask 16bit Bit mask describing PIOs whose status needs to be changed

status 16bit new status (what is the example value for setting a GPIO high)

Response:

0x01 0x02 0x04 [Error_code] Return packet (ACK)

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

Bluegiga Technologies Oy

Page 17 of 23

3.5.6 PIO set event

Command ADC set event sets which remote digital GPIO causes information about its status transition to be
sent.

Synopsis:

0x00 0x03 0x05 [source_mask]

Description:

source_mask 16bit Bit mask describing PIOs which trigger event sending upon change of its
state

Response:

0x01 0x02 0x05 [Error_code] Return packet (ACK)

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

Events:

0x02 0x05 0x05 [pio_status] [pio_change]

Description:

pio_status 16bit current status of PIOs masked with source_mask

pio_change 16bit PIOs whose state change caused this event to be sent

Bluegiga Technologies Oy

Page 18 of 23

3.5.7 PIO get direction

Command PIO get direction gets direction of defined PIOs.

Synopsis:

0x00 0x03 0x06 [source_mask]

Description:

source_mask 16bit Bit mask describing PIOs from which a reading is required

Response:

0x01 0x04 0x06 [Error_code] [value] Return packet with PIO directions from PIOs defined
by source_mask

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

value 16bit reading (1 = Output, 0 = Input)

Bluegiga Technologies Oy

Page 19 of 23

3.5.8 PIO set direction

Command PIO set direction sets direction of defined PIOs.

Synopsis:

0x00 0x05 0x07 [source_mask] [direction]

Description:

source_mask 16bit Bit mask describing PIOs whose direction needs to be changed

direction 16bit new PIO directions (1 = Output, 0 = Input)

Response:

0x01 0x02 0x07 [Error_code] Return packet (ACK)

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

Bluegiga Technologies Oy

Page 20 of 23

3.5.9 PIO get bias

Command PIO get bias gets bias of defined PIOs.

Synopsis:

0x00 0x03 0x08 [source_mask]

Description:

source_mask 16bit Bit mask describing PIOs from which bias reading is needed

Response:

0x01 0x04 0x08 [Error_code] [value] Return packet with PIO directions from PIOs defined
by source_mask

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

value 16bit reading (1 = Strong pull up/down, 0 = weak pull up/down)

Bluegiga Technologies Oy

Page 21 of 23

3.5.10 PIO set bias

Command PIO set direction sets direction of defined PIOs.

Synopsis:

0x00 0x05 0x09 [source_mask] [direction]

Description:

source_mask 16bit Bit mask describing PIOs whose bias needs to be changed

direction 16bit new PIO biases (1 = Output, 0 = Input)

Response:

0x01 0x02 0x09 [Error_code] Return packet (ACK)

Description:

Error_code 8bit

0x00 - OK, command completed successfully

0x01 - Fail, parameters ok but executing command failed

0x02 - Syntax error, parameter length is wrong

0x03 - Unknown command

Bluegiga Technologies Oy

Page 22 of 23

3.5.11 Power saving

iWRAP offers two power saving options. Sniff mode, which can be used to save power for active Bluetooth
connections and deep sleep more which puts the internal processor into a reduced duty cycle mode. Please
refer to iWRAP user guide for more information about sniff and deep sleep modes.

One should also know that when Bluetooth connections are in active mode i.e. no power saving in use the
master device uses 3-4 times less power then a slave device. Therefore for battery powered applications it
might be useful to configure the device as a master rather then a slave. Look at following commands in
iWRAP user guide: SET {link_id} MASTER or SET {link_id} SLAVE and SET BT ROLE.

Bluegiga Technologies Oy

Page 23 of 23

4 Contact Information

Sales: sales@bluegiga.com

Technical support: support@bluegiga.com

http://www.bluegiga.com/techforum/

Orders: orders@bluegiga.com

Head Office / Finland:

Phone: +358-9-4355 060

Fax: +358-9-4355 0660

Street Address:

Sinikalliontie 5A

02630 ESPOO

FINLAND

Postal address:

P.O. BOX 120

02631 ESPOO

FINLAND

Sales Office / USA:

Phone: (781) 556-1039

Bluegiga Technologies, Inc.

99 Derby Street, Suite 200 Hingham, MA 02043

mailto:sales@bluegiga.com
mailto:support@bluegiga.com
http://www.bluegiga.com/techforum/
mailto:orders@bluegiga.com

