

BGSCRIPT SCRIPTING LANGUAGE

DEVELOPER GUIDE

Wednesday, 28 May 2014

Version 3.6

Copyright © 2001-2013 Bluegiga Technologies Page of 2 50

Copyright © 2001 - 2014 Bluegiga Technologies

Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed herein at
any time without notice, and does not make any commitment to update the information contained herein.
Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual. Bluegiga
Technologies' products are not authorized for use as critical components in life support devices or systems.

Bluegiga Access Server, Access Point, APx4, AX4, BSM, iWRAP, BGScript and WRAP THOR are trademarks
of Bluegiga Technologies.

The trademark and logo are registered trademarks and are owned by the Bluetooth SIG, Inc.Bluetooth

ARM and ARM9 are trademarks of ARM Ltd.

Linux is a trademark of Linus Torvalds.

All other trademarks listed herein belong to their respective owners.

Copyright © 2001-2013 Bluegiga Technologies Page of 3 50

Table of Contents

1 Version History __ 5
2 Introduction -- BGscript __ 6
3 What is BGScript? __ 7

3.1 BGScript Scripting Language ___ 7
3.2 BGScript vs. BGAPI __ 8

4 BGScript Syntax ___ 9
4.1 Comments __ 9
4.2 Variables and Values ___ 9

4.2.1 Values ___ 9
4.2.2 Variables ___ 9
4.2.3 Global Variables ___ 11
4.2.4 Constant Variables ___ 11
4.2.5 Buffers __ 11
4.2.6 Strings __ 12

4.3 Expressions __ 13
4.4 Commands __ 14

4.4.1 event <event_name> (< event_parameters >) ______________________________________ 14
4.4.2 if <expression> then [else] end if __ 14
4.4.3 while <expression> end while __ 14
4.4.4 call <command name>(<command parameters>..)[(response parameters)] _______________ 15
4.4.5 let <variable> = <expression> __ 15
4.4.6 sfloat(mantissa , exponent) __ 15
4.4.7 float(mantissa , exponent) ___ 16
4.4.8 memcpy(destination, source , length) __ 17
4.4.9 memcmp(buffer1 , buffer2 , length) ___ 17
4.4.10 memset(buffer , value , length) ___ 17

4.5 Procedures __ 18
4.6 Using multiple script files __ 20

4.6.1 import ___ 20
4.6.2 export ___ 20

5 BGScript Limitations ___ 22
5.1 32-bit resolution ___ 22
5.2 Declaration required before use __ 22
5.3 DIM variable size __ 22
5.4 Reading internal temperature meter disabled IO interrupts _________________________________ 22
5.5 Writing data to an endpoint, which is not read ___ 22
5.6 No interrupts on Port 2 ___ 22
5.7 Performance ___ 22

6 Example BGscripts __ 23
6.1 Basics __ 23

6.1.1 Catching system start-up __ 23
6.1.2 Catching Bluetooth connection event ___ 24
6.1.3 Catching Bluetooth disconnection event __ 25

6.2 Hardware interfaces ___ 26
6.2.1 ADC __ 26
6.2.2 I2C ___ 28
6.2.3 IO __ 29
6.2.4 SPI ___ 31
6.2.5 Generating PWM signals __ 33

6.3 Timers __ 34
6.3.1 Continuous timer generated interrupt ___ 34
6.3.2 Single timer generated interrupt ___ 35

6.4 USB and UART endpoints ___ 36
6.4.1 UART endpoint __ 36
6.4.2 USB endpoint ___ 37

6.5 Attribute Protocol (ATT) ___ 38
6.5.1 Catching attribute write event ___ 38

6.6 Generic Attribute Profile (GATT) __ 39

Copyright © 2001-2013 Bluegiga Technologies Page of 4 50

6.6.1 Changing device name ___ 39
6.6.2 Writing to local GATT database ___ 40

6.7 PS store ___ 41
6.7.1 Writing a PS keys __ 41
6.7.2 Reading a PS keys ___ 42

6.8 Advanced scripting examples __ 43
6.8.1 Catching IO events and exposing them in GATT ____________________________________ 43

6.9 Bluegiga Development Kit Specific Examples __ 44
6.9.1 Display initialization __ 44
6.9.2 FindMe demo ___ 45
6.9.3 Temperature and battery readings to display _______________________________________ 46

6.10 BGScript tricks __ 48
6.10.1 HEX to ASCII ___ 48
6.10.2 UINT to ASCII __ 48

7 BGScript editors __ 49
7.1 Notepad ++ __ 49

7.1.1 Syntax highlight for BGScript ___ 49

Copyright © 2001-2013 Bluegiga Technologies Page of 5 50

1 Version History

Version Comments

2.3 BGScript limitations updated with performance comments

2.4 Added new features included in v.1.1 software.
Small improvements made into BGScript examples
Added a 4-channel PWM example

2.5 Reading ADC does not disable IO interrupts

2.6 Added battery reading example using the internal battery monitor

2.7 Updated ADC internal reference to 1.24V (was 1.15V)

3.0 BLE SW1.2 additions and changes:

Procedure support added
Memset support for buffer handling added
Limitations section aligned with the new SW enhancements

In addition, editorial improvements are done within the document.

3.1 Improved BGScript syntax documentation

3.2 I2C example improved and corrected

3.3 Splitting BGScript into multiple files through IMPORT and export directive made possible

3.4 Improvements to BGScript syntax description

3.5 Bluetooth Smart Software 1.3.0 compatible document version. The limitation for the maximum size
of all DIM variables is removed.

3.6 Editorial changes

Copyright © 2001-2013 Bluegiga Technologies Page of 6 50

2 Introduction -- BGscript

This document briefly describes the Bluegiga BGScript programming language for Bluegiga SmartBluetooth
Products. The document briefly explains what BGScript programming language is, what are the benefits, for
what it can be used for and what are the limitations. The document also contains multiple examples of BGScript
code and API and how it can be used to perform various task such as detecting connections, receivingBluetooth
and transmitting data and managing the hardware interfaces like UART, SPI and I2C.

Copyright © 2001-2013 Bluegiga Technologies Page of 7 50

3 What is BGScript?

3.1 BGScript Scripting Language

Bluegiga BGScript is a simple BASIC-style programming language that allows end-user applications to be
embedded to the Bluegiga Smart modules. The benefit of using BGScript is that one can create fullyBluetooth
standalone Smart devices without the need of an external MCU and this enables further size, cost andBluetooth
power consumption reductions. Although being a simple and easy-to-learn programming language BGScript
does provide features and functions to create fairly complex and powerful applications and it provides the
necessary APIs for managing Bluetooth connections, security, data transfer and various hardware interfaces
such as UART, USB, SPI, I2C, GPIO, PWM and ADC.

BGScript is fully event based programming language and code execution is started when events such as system
start-up, connection, I/O interrupt etc. occur.Bluetooth

BGScript applications are developed with Bluegiga's free-of-charge Smart SDK and the BGScriptBluetooth
applications are executed in the BGScript Virtual Machine (VM) that is part of the Bluegiga Bluetooth Smart
software. The Bluetooth Smart SDK comes with all the necessary tools for code editing and compilation and also
the needed tools for installing the complied firmware binary to the Bluegiga Bluetooth Smart modules. Multiple
example applications and code snipplets are also available for Bluegiga implementing applications like
thermometers, heart rate transmitters, medical sensors and iBeacons just to mention a few.

The illustration below describes the Bluegiga Bluetooth Smart software, API and how BGScript VM and
applications interface to it.

Figure: BGScript System Architecture

A simple BGScript code example:

Copyright © 2001-2013 Bluegiga Technologies Page of 8 50

system started, occurs on boot or reset
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)

 # Enable BLE advertising mode
 call gap_set_mode(gap_general_discoverable, gap_undirected_connectable)

 # Enable BLE bonding mode
 call sm_set_bondable_mode(1)

 # Start a repeating timer at 1-second interval (32768Hz = crystal frequency)
 call hardware_set_soft_timer(32768, 0, 0)
end

3.2 BGScript vs. BGAPI

BGScript applications are just one way of controlling the Bluegiga Bluetooth Smart modules and it may not be
usable in every use case. For example the amount of available hardware interfaces, RAM or Flash may limit you
to implement and execute your application on the microcontroller on-board the Bluegiga Bluetooth Smart
modules. If this is the case an alternate way of controlling the module is the BGAPI protocol. BGAPI protocol is a
simple binary based protocol that works over the physical UART and USB interfaces available on the Bluetooth
Smart modules. An external host processor can be used to implement the end user application and this
application can control the Bluetooth Smart modules using the BGAPI protocol.

When BGScript is enabled, the BGAPI protocol is disabled. BGScript cannot be used at the same
time as BGAPI control from an external host.

Copyright © 2001-2013 Bluegiga Technologies Page of 9 50

4 BGScript Syntax

The BGScript scripting language has BASIC-like syntax. Code is executed only in response to and eachevents,
line of code is executed in order, starting from the beginning of the definition and ending at a or event return

statement. Each line represents a single command.end

BGScript scripting language is currently supported by multiple Bluegiga's Bluetooth Smart and Wi-Fi products
and the BGScript command and events are specific to the technology.

Below is a conceptual example of simple BGScript usage with Bluegiga Wi-Fi software. The code below is
executed at the system start i.e. when the device is powered up and the code will start the Wi-Fi subsystem and
connects to a Wi-Fi access point with the SSID " ".test_ssid

Simple BGScript syntax example

system start-up event listener
event system_boot(major, minor, patch, build, bootloader, tcpip, hw)
 # Turn Wi-Fi subsystem on
 call sme_wifi_on()
end

Wi-Fi ON event listener
event sme_wifi_is_on(result)
 # connect to a network
 call sme_connect_ssid(9, "test_ssid")
end

4.1 Comments

Anything after a character is considered as a comment, and ignored by the compiler.#

x = 1 # comment

4.2 Variables and Values

4.2.1 Values

Values are always interpreted as integers (no floating-point numbers). Hexadecimal values can be expressed by
putting before the value. Internally, all values are 32-bit signed integers stored in memory in little-endian$
format.

x = 12 # same as x = $0c
y = 703710 # same as y = $abcde

IP addresses are automatically converted to their 32-bit decimal value equivalents.

x = 192.168.1.1 # same as x = $0101A8C0

4.2.2 Variables

Variables (not buffers) are signed 32-bit integer containers, stored in little-endian byte order. Variables must be
defined before usage.

dim x

Copyright © 2001-2013 Bluegiga Technologies Page of 10 50

Example

dim x
dim y

x = (2 * 2) + 1
y = x + 2

Copyright © 2001-2013 Bluegiga Technologies Page of 11 50

4.2.3 Global Variables

Variables can be defined globally using definition which must be used outside an block.dim event

dim j

software timer listener
event hardware_soft_timer(handle)
 j = j + 1
 call attributes_write(xgatt_counter, 2, j)
end

4.2.4 Constant Variables

Constants are signed 32-bit integers stored in little-endian byte order and they also need to be defined before
use.. Constants can be particularly useful because they do not take up any of the limited RAM that is available to
BGScript applications and instead constant values are stored in flash as part of the application code.

const x = 2

4.2.5 Buffers

Buffers hold 8-bit values and can be used to prepare or parse more complex data structures. For example a
buffer might be used in a Bluetooth Smart on-module application to prepare an attribute value before writing it
into the attribute database.

Like variables buffers need to be defined before usage. Currently the maximum size of a buffer is 256 bytes.

event hardware_io_port_status(delta, port, irq, state)
 tmp(0:1) = 2
 tmp(1:1) = 60 * 32768 / delta

 call attributes_write(xgatt_hr, 2, tmp(0:2))
end

dim u(10)

Buffers use an index notation with the following format:

BUFFER(< >:< >)expression size

The < > is used as the index of the first byte in the buffer to be accessed and < > is used toexpression size
specify how many bytes are used starting from the location defined by < >. Note that this is expression <size>

 the end index position.not

u(0:1) = $a
u(1:2) = $123

The following syntax could be used with the same result due to little-endian byte ordering:

u(0:3) = $1230a

When using constant numbers to initialize a buffer, only (4) bytes may be set at a time. Longer buffers mustfour
be written in multiple parts or using a string literal (see section below).Strings

Copyright © 2001-2013 Bluegiga Technologies Page of 12 50

u(0:4) = $32484746
u(4:1) = $33

Using Buffers with Expressions

Buffers can also be used in mathematical expressions, but only a maximum of (4) bytes are supported at afour
time since all numbers are treated as signed 32-bit integers in little-endian format. The following examples show
valid use of buffers in expressions.

a = u(0:4)
a = u(2:2) + 1
u(0:4) = b
u(2:1) = b + 1

The following example is :not valid

if u(0:5) = "FGH23" then
 # do something
end if

This is because the mathematical equality operator ("=") interprets both sides as numerical values and in
BGScript numbers are always 4 bytes (32 bits). This means you can only compare (with '=') buffer segments
which are exactly four (4) bytes long. If you need to compare values which are not four (4) bytes in length you
must use the function, which is described later in this document.memcmp

if u(1:4) = "GH23" then
 # do something
end if

4.2.6 Strings

Buffers can be initializated using literal string constants. Using this method more than four (4) bytes at a time
may be assigned.

u(0:5) = "FGH23"

Literal strings support C-style escape sequences, so the following example will do the same as the above:

u(0:5) = "\x46\x47\x48\x32\x33"

Using this method you can assign and subsequently compare longer values such as 128-bit custom UUIDs for
example when scanning or searching a GATT database for proprietary services or characteristics. However
keep in mind that the data must be presented in little-endian format, so the value assigned here as a string literal
should be the reverse of the 128-bit UUID entered into the UUID attributes if that is what you aregatt.xml
searching for.

Copyright © 2001-2013 Bluegiga Technologies Page of 13 50

4.3 Expressions

Expressions are given in infix notation.

x = (1+2) * (3+1)

The following are supported:mathematical operators

Operation Symbol

Addition: +

Subtraction: -

Multiplication: *

Division: /

Less than: <

Less than or equal: <=

Greater than: >

Greater than or equal: >=

Equals: =

Not equals: !=

Parentheses ()

Note

Currently there is no support for or operators.modulo power

The following are supported:bitwise operators

Operation Symbol

AND &

OR |

XOR ^

Shift left <<

Shift right >>

The following are supported:logical operators

Operation Symbol

AND &&

OR ||

Copyright © 2001-2013 Bluegiga Technologies Page of 14 50

4.4 Commands

4.4.1 event <event_name> (< event_parameters >)

A code block defined between and keywords will be run in response to a specific event. Executionevent end
will stop when reaching or . BGScript VM queues each event generated by the API and executesend return
them in FIFO order, atomically (one at a time and all the way through to completion or early termination).

This example shows a basic system boot event handler for the Smart modules. The example will startBluetooth
Bluetooth Smart advertisements as soon as the module is powered on or reset:

event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 call gap_set_mode(gap_general_discoverable, gap_undirected_connectable)
end

BGScript event timeouts

The BGScript interpreter on the modules has a default execution timeout value of Bluetooth Smart
. This value does not correspond directly to lines of code or to a unit of time, but rather to1000 steps

executed opcode steps. If a particular event handler takes more than the specified number of steps,
then the event will simply cut off immediately and the next event in the queue (if present) will begin.
This value may be controlled with the tag in the optional file as<script_timeout> config.xml
described in the . You can increase the timeout, or disable itBluetooth Smart Configuration Guide
entirely if desired.

4.4.2 if <expression> then [else] end if

Conditions can be tested with clause. Any commands between and will be executed if <if then end if
> is true (or non-zero).expression

if x < 2 then
 x = 2
 y = y + 1
end if

If is used and if the condition is success, then any commands between and will be executed.else then else
However if the condition fails then any commands between and will be executed.else end if

if x < 2 then
 x = 2
 y = y + 1
else
 y = y - 1
end if

4.4.3 while <expression> end while

Loops can be made using . All commands on lines between and will be executed while <while while end while
> is true (or non-zero).expression

Copyright © 2001-2013 Bluegiga Technologies Page of 15 50

a = 0
while a < 10
 # will loop 10 times
 a = a + 1
end while

Timeouts with WHILE loops

It is important to remember that the default BGScript behavior on modules involves aBluetooth Smart
script timeout that will terminate an event early if the event handler code takes too long to execute. This
can be very easy to do with long-running loops. For example, a simple UART output commandwhile
inside a loop can run through approximately iterations when the default script timeout value ofwhile 75
1000 is used. If you need a longer loop than this on your BGScript application,Bluetooth Smart
please see the for information on how to increase or disableBluetooth Smart Configuration Guide
the script timeout.

4.4.4 call <command name>(<command parameters>..)[(response parameters)]

The command is used to execute BGAPI commands and receive command responses. Command call
parameters can be given as expressions and response parameters are variable names where response values
will be stored. Response parentheses and parameters can be omitted if the response is not needed by your
application.

Note

Note that all response variables must be declared before use.

dim r

write 2 bytes from tmp buffer index 0 to xgatt_hr attribute
(response will be stored in variable "r")
call attributes_write(xgatt_hr, 2, tmp(0:2))(r)

The command can also be used to execute user-defined procedures (functions). The syntax in this case is call
similar to executing a BGAPI command, except return values are not supported.

4.4.5 let <variable> = <expression>

Optional command to assign expression to variable.

let a = 1
let b = a + 2

4.4.6 sfloat(mantissa , exponent)

This function changes given mantissa and exponent in to a 16bit IEEE-11073 SFLOAT value which has
base-10. Conversion is done using following algorithm:

Exponent Mantissa

Length 4 bits 12 bits

Type 2's-complement 2's-complement

Copyright © 2001-2013 Bluegiga Technologies Page of 16 50

Mathematically the number generated by () is calculated as . The returnsfloat <mantissa> * 10^<exponent>
value is a 2-byte uint8 array in the SFLOAT format. Below are some example parameters, and their resulting
decimal sfloat values:

Mantissa Exponent Result (actual)

-105 -1 -10.5

100 0 100

320 3 320,000

Use the function as follows, assuming that is already defined as a 2-byte uint8s array (or bigger):sfloat() buf

buf(0:2) = sfloat(-105, -1)

The array will now contain the SFLOAT representation of . buf -10.5

Some reserved special purpose values:

NaN (not a number)
exponent 0
mantissa 0x007FF

NRes (not at this resolution)
exponent 0
mantissa 0x00800

Positive infinity
exponent 0
mantissa 0x007FE

Negative infinity
exponent 0
mantissa 0x00802

Reserved for future use
exponent 0
mantissa 0x00801

4.4.7 float(mantissa , exponent)

Changes given mantissa and exponent in to 32-bit IEEE-11073 FLOAT value which has base-10. Conversion is
done using following algorithm:

Exponent Mantissa

Length 8 bits 24 bits

Type signed integer signed integer

Some reserved special purpose values:

NaN (not a number)
exponent 0
mantissa 0x007FFFFF

NRes (not at this resolution)
exponent 0
mantissa 0x00800000

Positive infinity
exponent 0
mantissa 0x007FFFFE

Negative infinity
exponent 0
mantissa 0x00800002

Copyright © 2001-2013 Bluegiga Technologies Page of 17 50

Reserved for future use
exponent 0
mantissa 0x00800001

4.4.8 memcpy(destination, source , length)

The function copies bytes from the source buffer to destination buffer. Destination and source shouldmemcpy
not overlap. Note that the buffer index notation only uses the byte index, and should not also include the start

 portion, for example " " instead of " ".size dst(start) dst(start:size)

dim dst(3)
dim src(4)
memcpy(dst(0), src(1), 3)

4.4.9 memcmp(buffer1 , buffer2 , length)

The function compares and , for the length defined with . The function returns 1memcmp buffer1 buffer2 length
if the data is identical.

dim x(3)
dim y(4)
if memcmp(x(0), y(1), 3) then
 # do something
end if

4.4.10 memset(buffer , value , length)

This function fills with with the data defined in for the length defined with . buffer value length

dim dst(4)
memset(dst(0), $30, 4)

Copyright © 2001-2013 Bluegiga Technologies Page of 18 50

4.5 Procedures

BGScript supports procedures which can be used to implementing subroutines. Procedures differ from functions
used in other programming languages since they do not return a value and cannot be used expressions.
Procedures are called using the command just like other BGScript commands.call

Note

On Smart products the amount of RAM allocated to the call stack is 100 bytes. If yourBluetooth
program flow results in nested procedure calls (i.e. event handler calls , which calls procedure1

, which calls) and/or you define procedures which use bufferprocedure2 procedure3 uint8array
parameters and then send long buffer values you can run out of stack space. The effect of this is
typically that user-defined variables will have some or all of their data overwritten with temporary call
stack data.

In order to avoid this problem when using BGScript on Smart modules:Bluetooth

Try to keep your procedure calls as flat as possible (avoid nested calls)
Avoid the use of parameters whenever possibleuint8array
When using uint8array parameters, avoid sending long buffers whenever possible

Procedures are defined by procedure command as shown below. Parameters are defined inside parentheses
the same way as in event definition. Buffers are defined as last parameter and requires a pair of empty
parentheses.

Example using procedures to print MAC address (Wifi modules only due to "endpoint_send" command
and wifi-specific events):

Copyright © 2001-2013 Bluegiga Technologies Page of 19 50

MAC address output on Wifi modules

dim n, j

print a nibble
procedure print_nibble(nibble)
 n = nibble
 if n < $a then
 n = n + $30
 else
 n = n + $37
 end if
 call endpoint_send(0, 1, n)
end

print hex values
procedure print_hex(hex)
 call print_nibble(hex/16)
 call print_nibble(hex&$f)
end

print MAC address
procedure print_mac(len, mac())
 j = 0
 while j < len
 call print_hex(mac(j:1))
 j = j + 1
 if j < 6 then
 call endpoint_send(0, 1, ":")
 end if
 end while
end

boot event listener
event system_boot(major, minor, patch, build, bootloader, tcpip, hw)
 # read mac address
 call config_get_mac(0)
end

MAC address read event listener
event config_mac_address(hw_interface, mac)
 # print the MAC address
 call print_mac(6, mac(0:6))
end

Example using single procedure to print arbitrary hex data in ASCII with optional separator (BLE
modules only due to specific API commands):

Copyright © 2001-2013 Bluegiga Technologies Page of 20 50

MAC address output on BLE modules

flexible procedure to display %02X byte arrays
dim hex_buf(3) # [0,1] = ASCII hex representation, [2]=separator
dim hex_index # byte array index
procedure print_hex_bytes(endpoint, separator, reverse, b_length, b_data())
 hex_buf(2:1) = separator
 hex_index = 0
 while hex_index < b_length
 if reverse = 0 then
 hex_buf(0:1) = (b_data(hex_index:1)/$10) + 48 + ((b_data(hex_index:1)/$10)/10*7)
 hex_buf(1:1) = (b_data(hex_index:1)&$f) + 48 + ((b_data(hex_index:1)&$f)/10*7)
 else
 hex_buf(0:1) = (b_data(b_length - hex_index - 1:1)/$10) + 48 + ((b_data(b_length -
hex_index - 1:1)/$10)/10*7)
 hex_buf(1:1) = (b_data(b_length - hex_index - 1:1)&$f) + 48 + ((b_data(b_length -
hex_index - 1:1)&$f)/10*7)
 end if
 if separator > 0 && hex_index < b_length - 1 then
 call system_endpoint_tx(endpoint, 3, hex_buf(0:3))
 else
 call system_endpoint_tx(endpoint, 2, hex_buf(0:2))
 end if
 hex_index = hex_index + 1
 end while
end

dim mac_addr(6) # MAC address container
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 # get module's MAC address (will be little-endian byte order)
 call system_address_get()(mac_addr(0:6))

 # output HEX representation (will look like "00:07:80:AA:BB:CC")
 # endpoint=UART1, separator=":", reverse=enabled, length=6, data="mac_addr" buffer
 call print_hex_bytes(system_endpoint_uart1, ":", 1, 6, mac_addr(0:6))
end

4.6 Using multiple script files

4.6.1 import

The directive allows you to include other script files.import

main.bgs

import "other.bgs"

event system_boot(major, minor, patch, build, bootloader, tcpip, hw)
 # wifi module has booted
end

4.6.2 export

By default all code and data are local to each script file. The directive allows accessing variables andexport
procedures from external files.

hex.bgs

export dim hex(16)
export procedure init_hex()
 hex(0:16) = "0123456789ABCDEF"
end

Copyright © 2001-2013 Bluegiga Technologies Page of 21 50

main.bgs

import "hex.bgs"
event system_boot(major, minor, patch, build, ll_version, protocol, hw)
 call init_hex()
end

Copyright © 2001-2013 Bluegiga Technologies Page of 22 50

5 BGScript Limitations

5.1 32-bit resolution

All operations in BGScript must be done using values that fit into 32 bits. The limitation affects for example long
timer intervals. Since the soft timer has a 32.768kHz tick speed, it is possible in theory to have maximum interval
of (2^32-1)/32768kHz = 36.4h. If longer timer periods are needed, incremental counters need to be used.

In particular with LE products, timer is 22 bits, so the maximum value with BLE112 is 2^22 =Bluetooth
4194304/32768Hz = 128 seconds, while with BLED112 USB dongle the maximum value is 2^22 =
4194304/32000Hz = 131 seconds

5.2 Declaration required before use

All data and procedures needs to be declared before usage.

5.3 DIM variable size

The largest size of a DIM variable is . This limitation is in place to ensure that the small amount of255 bytes
RAM on the internal 8051 processor is not used entirely by user space variables and enough RAM is available
for the Bluetooth Smart stack to maintain connections and transmission buffers.

5.4 Reading internal temperature meter disabled IO interrupts

Reading BLE112 internal temperature sensor value

call hardware_adc_read(14,3,0)

5.5 Writing data to an endpoint, which is not read

If the USB interface is enabled and the USB is connected to a USB host, there needs to be an application
reading the data written to the USB. Otherwise the BGAPI messages will fill the buffers and cause the firmware
to eventually freeze.

5.6 No interrupts on Port 2

Currently I/O interrupts cannot be enabled on any of the Port 2 pins. Interrupts are only only supported on Port 0
or Port 1.

5.7 Performance

BGScript has limited performance, which might prevent some applications to be implemented using BGscript.
Typically, BGScript can execute commands/operations in the order of thousands per second.

Copyright © 2001-2013 Bluegiga Technologies Page of 23 50

6 Example BGscripts

This section contains useful BGScript examples.

6.1 Basics

This section contains very basic BGScript examples.

6.1.1 Catching system start-up

This example shows how to catch a system start-up. This event is the entry point to all BGScript code execution
and can be compared to main() function in C.

System start-up

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # System started, enable advertising and allow connections
 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)
 ...
end

Copyright © 2001-2013 Bluegiga Technologies Page of 24 50

6.1.2 Catching Bluetooth connection event

When a connection is received a event is generated.Bluetooth connection_status(...)

The example below shows how to enable advertisements to make the device connectable and how to catch a
 connection event.Bluetooth

Entering advertisement mode after disconnect

dim connected

System start/boot listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Device is not connected yet
 connected = 0

 # Set advertisement interval to 20 to 30ms. Use all advertisement channels
 call gap_set_adv_parameters(32,48,7)

 # Start advertisement (generic discoverable, undirected connectable)
 call gap_set_mode(2,2)
end

Connection event listener
event connection_status(connection, flags, address, address_type, conn_interval, timeout, latency,
bonding)

 # Device is connected.
 connected = 1
end

Copyright © 2001-2013 Bluegiga Technologies Page of 25 50

6.1.3 Catching Bluetooth disconnection event

When a connection is lost a Bluetooth connection_disconnected event is created.

Entering advertisement mode after disconnect

Disconnection event
event connection_disconnected(handle, result)
 #connection disconnected, continue advertising
 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)
end

Copyright © 2001-2013 Bluegiga Technologies Page of 26 50

6.2 Hardware interfaces

This section contains basic examples to use hardware interfaces like I2C, SPI, AIO etc. from the BGScript.

6.2.1 ADC

ADC events can be cached with event listener and the read operations on the otherhardware_adc_result(...)
hand are called with function.call hardware_adc_read(...)

The example below shows how to read the internal temperature monitor and how to convert the value into
Celsius

ADC read

dim celsius
dim offset
dim tmp(5)

System boot event generated when the device is stared
event system_boot(major ,minor ,patch ,build ,ll_version ,protocol_version ,hw)

 # Call ADC read.
 # 14 = internal temperature sensor
 # 3 = 12 effective bits
 # 0 = Internal 1.24V reference
 call hardware_adc_read(14,3,0)
end

ADC event listener
event hardware_adc_result(input,value)

 # ADC value is 12 MSB
 celsius = value / 16

 # Calculate temperature
 # ADC*V_ref/ADC_max * T_coeff + offset
 celsius = (10*celsius*1240/2047) * 10/45 + offset

 # set flags according to Health Thermometer specification
 # 0 = Temperature in Celsius
 tmp(0:1)=0

 # Convert to float
 tmp(1:4)=float(celsius, -1)
end

Copyright © 2001-2013 Bluegiga Technologies Page of 27 50

The example below shows how to read the internal battery monitor and how to convert the battery voltage level
into percentage. A full example is included in the Bluetooth Smart SDK v.1.1 or newer.

ADC read

This event listener listens for incoming ATT protocol read requests and when the battery
attribute is read executes an ADC read when the battery value is requested.
event attributes_user_read_request(connection, handle, offset, maxsize)
 batconn_handle=connection
 #start measurement, read VDD/3, 9 effective bits
 call hardware_adc_read(15,3,0)
end

This event listener catches the ADC result
event hardware_adc_result(input,value)
 #scale value to range 0-100
 #measurement range is 32768 = 1.24V*3 = 3.72V
 #new battery ADC measurement is 22198=2.52V
 #minimum battery voltage is 2.0 volts=2.0V/3.72V*32768= 17617
 #22198 - 17617 = 4580
 batresult=(value-17617)*100/4580

 #clip to 100%
 if batresult>100 then
 batresult=100
 end if
 if batresult<0 then
 batresult=0
 end if

 tmp(0:1)=batresult

 if batconn_handle<$ff then
 #if connection handle is valid
 call attributes_user_read_response(batconn_handle,0,1,tmp(0:1))
 batconn_handle=$ff
 end if
end

The above example requires the Bluetooth Smart SDK v.1.1 or newer in order to work properly. The
code automatically turns off the external DC/DC (if used) when the battery reading is made and then
re-enables it after the reading is complete.

Copyright © 2001-2013 Bluegiga Technologies Page of 28 50

6.2.2 I2C

BLE112 has a software implementation (bit-bang) of I2C which uses fixed pins. For communicating over the I2C
bus following hardware setup is needed:

P1_6: I2C data
P1_7: I2C clock

Pull-ups must be enabled on both the pins.

BLE113 has a hardware implementation of I2C (only master-mode is supported). I2C pins are the following:

Pin 14: I2C clock
Pin 15: I2C data

No UART or SPI can be used in channel 1 with alternative 2 configuration when I2C is used.

I2C operations

Reading 2 bytes from device which has I2C address of 128.
I2C stop condition is sent after the transmission.
Result 0 indicates successful read.
call hardware_i2c_read(128,1,2)(result,data_len,data)

Write to address 128 one byte (0xf5). I2C stop condition is sent after the transmission.
written indicates how many bytes were successfully written.
call hardware_i2c_write(128,1,1,"\xf5")(written)

Copyright © 2001-2013 Bluegiga Technologies Page of 29 50

6.2.3 IO

IO wake-up

When the device has no active tasks or timers running it can go to power mode 3 (PM3), which is the lower
power mode consuming about 400nA. PM3 power save mode however requires an external wake-up using an
IO pin.

The example here shows and IO interrupt can be used to wake up the device and start advertisements for 5
seconds and then go back to PM3.

Enabling and catching IO interrupts

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)

 # Enable IO interrupts from PORT 0 PINs P0_0 and P0_1 on rising edge
 call hardware_io_port_config_irq(0,$3,0)
end

HW interrupt listener
event hardware_io_port_status(delta, port, irq, state)

 # Configure advertisement parameters
 call gap_set_adv_parameters(40, 40, 7)
 # Start advertisements
 call gap_set_mode(2, 2)
 # Start a 5 second, one stop timer
 call hardware_set_soft_timer($27FFB, 0 ,1)
end

Timer event listener
event hardware_soft_timer(handle)

 #Stop advertisements and allow the device to go to PM3
 call gap_set_mode(0, 0)
end

To enable PM3 and configure the wake-up pin the following configurations need to be used in the
 file.hardware.xml

<hardware>
<sleeposc enable="true" ppm="30" />
<wakeup_pin enable="true" port="0" pin="0" />
<usb enable="false" endpoint="none" /> <txpower power="15" bias="5" />

<port index="0" tristatemask="0" pull="down" />
<script enable="true" />
<slow_clock enable="true" />
</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page of 30 50

Writing IO status

The example below shows how to write the P0_0 status.

Enabling and catching IO interrupts

Boot event listener
event system_boot(major ,minor ,patch ,build ,ll_version ,protocol_version ,hw)

 # Configure the P0_0 as output
 call hardware_io_port_config_direction(0, 1)
 # Enable P0_0 pin
 call hardware_io_port_write(0, 1, 1)

 # Start a 5 second, one stop timer
 call hardware_set_soft_timer($27FFB, 0 ,1)
end

Timer event listener
event hardware_soft_timer(handle)
 # When timer expires disable P0_0 pin
 call hardware_io_port_write(0, 1, 0)
end

Copyright © 2001-2013 Bluegiga Technologies Page of 31 50

6.2.4 SPI

Writing SPI

SPI interface can be used as a peripheral interface for example to connect to sensors like accelorometers or
simple displays. The example below shows how to write data to SPI interface.

Writing to SPI

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)

 # Writing 5 bytes to SPI
 call hardware_spi_transfer(0,5,"\x01\x02\x03\x04\x05")

 # Writeing a "Hello world\!" string to SPI
 call hardware_spi_transfer(0,12,"Hello world\!")
end

The following configurations need to be in the to enable the SPI interface and BGScripthardware.xml
execution.

<hardware>
...
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />
<script enable="true" />
</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page of 32 50

Reading SPI

The example below shows how to read data from SPI interface. SPI interface returns you as many bytes as you
write to it. In this example two (2) bytes are written to SPI interface and the return values return the read result.
The read data is stored in the -array and it has length on two (2) bytes.tmp

Reading SPI interface

dim tmp(10)
dim result
dim channel
dim tlen

call hardware_spi_transfer(0,2,"\x01\x02")(result,channel,tlen,tmp(0))

The following configurations need to be in the hardware.xml to enable the SPI interface and BGScript
execution.

<hardware>
...
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />
<script enable="true" />
</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page of 33 50

6.2.5 Generating PWM signals

In order to generate PWM signals output compare mode needs to be used. PWM output signals can be
generated using the and when and are in .timer modulo mode channels 1 2 output compare mode 6 or 7

For detailed instructions about PWM please refer to chapter in CC2540 user guide.9.8 Output Compare Mode

In order to generate a 4 channel PWM signal the following example can be used.

A 4 channel PWM signal

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 call hardware_timer_comparator(1, 0, 6, 32000)
 call hardware_timer_comparator(1, 1, 6, 16000)
 call hardware_timer_comparator(1, 2, 6, 10000)
 call hardware_timer_comparator(1, 3, 6, 8000)
 call hardware_timer_comparator(1, 4, 6, 4000)
end

The example uses Timer 1 in alternate 2 configuration with four (4) PWM channels in pins p1.1, p1.0,
p0.7 and p0.6

The following configurations need to be in the to enable the timer and BGScript execution.hardware.xml

<hardware>
...
<timer index =" 1 " enabled_channels =" 0x1f " divisor =" 0 " mode =" 2 " alternate =" 2 " />
</hardware>

Notice that PWMs do not work when the device is in a sleep mode.

Copyright © 2001-2013 Bluegiga Technologies Page of 34 50

6.3 Timers

This section describes how to use timers with BGscript.

6.3.1 Continuous timer generated interrupt

This example shows how to generate continuous timer generated interrupts

Enabling timer generated interrupts

Boot event listener
event system_boot(major ,minor ,patch ,build ,ll_version ,protocol_version ,hw)
 ...
 #Set timer to generate event every 1s
 call hardware_set_soft_timer(32768, 1, 0)
 ...
end

#Timer event listener
event hardware_soft_timer(handle)
 #Code that you want to execute once per 1s
 ...
end

Even with a soft timer running the module can enter sleep mode 2, in which power consumption is about 1µA.
Sleep mode 3 is entered only if there are no timers running and the module is not having any scheduled radio
activity.

One active timer

There can only be one timer running at the same time. Please stop the currently running timer by
issuing) before launching the next one.call hardware_set_soft_timer(0, {handle}, {singleshot}

Copyright © 2001-2013 Bluegiga Technologies Page of 35 50

6.3.2 Single timer generated interrupt

The 2nd example shows how to set a timer, which is called only once. This is useful, when some action needs to
be implemented only once, like the change of advertisement interval in Proximity profile.

In this example in the beginning the device advertises quickly, but after 30 seconds the advertisement interval is
reduced, in order to save battery.

Using timer once

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Set advertisement parameters according to the Proximity profile
 # Min interval 20ms, max interval 30ms, use all 3 channels
 call gap_set_adv_parameters(32, 48, 7)

 # Enabled advertisement
 # Limited discovery, Undirected connectable
 call gap_set_mode(1, 2)

 # Start timer
 # single shot, 30 secods, timer handle = 1
 call hardware_set_soft_timer($F0000, 1, 1)
end

Timer event listener
event hardware_soft_timer(handle)

 # run the code only if timer handle is 1
 if handle = 1 then
 # Stop advertisement
 call gap_set_mode(0, 0)

 #Reconfigure parameters
 # Min interval 1000ms, max interval 2500ms, use all 3 channels
 call gap_set_adv_parameters(1600, 4000, 7)

 # Enabled advertisement
 # Limited discovery, Undirected connectable
 call gap_set_mode(1, 2)
 end if

end

Copyright © 2001-2013 Bluegiga Technologies Page of 36 50

6.4 USB and UART endpoints

This section describes the usage of endpoints, which can be used to send or receive data from interfaces like
UART or USB.

6.4.1 UART endpoint

The example shows how to send data to USART1 endpoint from BGScript.

Writing to USB endpoint

System start/boot listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Start continuous timer with 1 second interval. Handle ID 1
 # 1 second = $8000 (32.768kHz crystal)
 call hardware_set_soft_timer($8000, 1, 0)
end

Timer event(s) listener
event hardware_soft_timer(handle)

 # 1 second timer expired
 if handle = 1 then
 call system_endpoint_tx(5, 14, "TIMER EXPIRED\n")
 end if
end

The following configurations need to be in the to enable the UART interface and allowhardware.xml
BGscript to access it.

<?xml version="1.0" encoding="UTF-8" ?>

<hardware>
...
<usart channel="1" alternate="1" baud="115200" endpoint="none" />
<script enable="true" />
</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page of 37 50

6.4.2 USB endpoint

The example shows how to send data to USB endpoint from BGScript.

Writing to USB endpoint

System start/boot listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Start continuous timer with 1 second interval. Handle ID 1
 # 1 second = $8000 (32.768kHz crystal)
 call hardware_set_soft_timer($8000, 1, 0)
end

Timer event(s) listener
event hardware_soft_timer(handle)

 # 1 second timer expired
 if handle = 1 then
 call system_endpoint_tx(3, 14, "TIMER EXPIRED\n")
 end if
end

The following configurations need to be in the to enable the USB interface and allowhardware.xml
BGscript to access it.

<?xml version="1.0" encoding="UTF-8" ?>

<hardware>
...
<usb enable="true" endpoint="none" />
<script enable="true" />
</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page of 38 50

6.5 Attribute Protocol (ATT)

This section contains BGscript examples related to Attribute Protocol (ATT) events.

6.5.1 Catching attribute write event

The example shows to to catch an event when remote devices writes an attribute over a Bluetooth connection. A
simple FindMe example is used where the remote device writes a single value to the local GATT database
indicating the alert level.

Catching an attribute write

Listen for GATT write events
event attributes_value(connection, reason, handle, offset, value_len, value)
 # Read the value and enable corresponding alert
 level=value(0:1)
 if level=0 then
 # TODO: Execute an action corresponding "No alert" status.
 end if
 if level=1 then
 # TODO: Execute an action corresponding "Mild alert" status.
 end if
 if level=2 then
 # TODO: Execute an action corresponding "High alert" status.
 end if
end

Copyright © 2001-2013 Bluegiga Technologies Page of 39 50

6.6 Generic Attribute Profile (GATT)

This section shows examples how to manager the local GATT database.

6.6.1 Changing device name

The example below shows how to change the device name using BGScript.

In this example we use the following GATT database:

gatt.xml

<service uuid="1800">
 <description>Generic Access Profile</description>

 <characteristic uuid="2a00" id="xgatt_name">
 <properties read="true"/>
 <value>01020304050607</value>
 </characteristic>

 <characteristic uuid="2a01">
 <properties read="true" const="true" />
 <value type="hex">4142</value>
 </characteristic>
 </service>

To write a new value into the characteristic defined in the l following code needs to be used. Please notegatt.xm
that the must be the same as in the .id gatt.xml

script.bgs

Generate Friendly name in ASCII
name(0:1)=$42
name(1:1)=$47
name(2:1)=$53
name(3:1)=$63
name(4:1)=$72
name(5:1)=$69
name(6:1)=$70
name(7:1)=$74

#Write name to local GATT
call attributes_write(xgatt_name, 0, 7, name(0:7))

Copyright © 2001-2013 Bluegiga Technologies Page of 40 50

6.6.2 Writing to local GATT database

To write to the local GATT database you first need to define a characteristic under a service in your GATT
database (). You also need to assign an parameter for the characteristic, which can then be used ingatt.xml id
BGScript to write the value.

In this example we use the following GATT database:

gatt.xml

<service uuid="1809">
 <description>Health Thermometer Service</description>

 <characteristic uuid="2a1c" id="xgatt_temperature_celsius">
 <description>Celsius temperature</description>
 <properties indicate="true"/>
 <value type="hex">0000000000</value>
 </characteristic>
</service>

To write a new value into the characteristic defined in the l following code needs to be used. Please notegatt.xm
that the must be the same as in the .id gatt.xml

script.bgs

#write 5 bytes from tmp array to attribute with offset 0
call attributes_write(xgatt_temperature_celsius,0,5,tmp(0:5))

Copyright © 2001-2013 Bluegiga Technologies Page of 41 50

6.7 PS store

These examples show how to read and write PS-keys.

6.7.1 Writing a PS keys

The example shows how to write an attribute written by a remote device into PS store.Bluetooth

Writing to PS store

Check if remote device writes a value to the GATT and write it to a PS key 0x8000
Catch an attribute write
event attributes_value(connection, reason, handle, offset, value_len, value_data)

 # Check if handle value 1 is written
 if handle = 1
 # Write attribute value to PS-store
 call flash_ps_save($8000, value_len, value_data(0:value_len))
 end if
end

PS keys from 8000 to 807F can be used for persistent storage of user data.
Each key can store up to 32 Bytes.

Copyright © 2001-2013 Bluegiga Technologies Page of 42 50

6.7.2 Reading a PS keys

The example shows how to read a value from the local PS store and write it to GATT database.

Reading PS store

#Initialize a GATT value from a PS key, which is 2 bytes long
call flash_ps_load($8000)(result, len1, data1(0:2))

Write the PS value to handle with ID "xgatt_PS_value"
call attributes_write(xgatt_PS_value, 0, len1, data1(0:len1))

PS keys from 8000 to 807F can be used for persistent storage of user data.
Each key can store up to 32 Bytes.

Copyright © 2001-2013 Bluegiga Technologies Page of 43 50

6.8 Advanced scripting examples

This section shoes more advanced scripting examples where several functions are made.

6.8.1 Catching IO events and exposing them in GATT

This example shows hot to catch I/O events and exposing them via a custom service in GATT data base.

he example service look like the one below and the I/O characteristic has and propertiesread notify

gatt.xml

<service uuid="00431c4a-a7a4-428b-a96d-d92d43c8c7cf">
 <description>Bluegiga IO service</description>
 <characteristic uuid="f1b41cde-dbf5-4acf-8679-ecb8b4dca6fe" id="xgatt_io">
 <properties read="true" notify="true"/>
 <value type="hex" length="1"></value>
 </characteristic>
 </service>

In order to catch the I/O events and write them to GATT database the following event handled is used in
BGScript code.

script.bgs

#HW interrupt listener
event hardware_io_port_status(delta, port, irq, state)

 # Write I/O status to GATT
 call attributes_write(xgatt_io,0,1,irq)
end

On DKBLE112 development kit there are buttons in I/O pins P0_0 and P0_1 and in order for this example to
work with DKBLE112 the following configuration is needed in hardware.xml.

hardware.xml

<port index="0" pull="down" />

Copyright © 2001-2013 Bluegiga Technologies Page of 44 50

6.9 Bluegiga Development Kit Specific Examples

This section contains examples specific to the Bluegiga BLE development kits.

6.9.1 Display initialization

The example below shows how to initialize the display in the BLE development kit and and how to write data to
it.

The supported commands can be found from the displays data sheet as well the initialization sequence.

DKBLE112 display initialization

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Set display to command mode
 call hardware_io_port_write(1,$3,$1)
 call hardware_io_port_config_direction(1,$7)

 # Initialize the display (see NHDC0216CZFSWFBW3V3 data sheet)
 call hardware_spi_transfer(0,11,"\x30\x30\x30\x39\x14\x56\x6d\x70\x0c\x06\x01")

 # Set display to data mode
 # Write "Hello world\!" to the display.
 call hardware_io_port_write(1,$3,$3)
 call hardware_spi_transfer(0,12,"Hello world\!")

end

SPI configuration in hardware.xml
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

Copyright © 2001-2013 Bluegiga Technologies Page of 45 50

6.9.2 FindMe demo

The example script implements a simple FindMe profile device. The alert status is displayed on the BLE
development kit's display when remote device changes the status.

SPI configuration in hardware.xml
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

DKBLE112 FindMe Target

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Put display into command mode
 call hardware_io_port_write(1,$3,$1)
 call hardware_io_port_config_direction(1,$7)

 # Configure Display
 call hardware_spi_transfer(0,11,"\x30\x30\x30\x39\x14\x56\x6d\x70\x0c\x06\x01")

 # Put display into data mode and write
 call hardware_io_port_write(1,$3,$3)
 call hardware_spi_transfer(0,12,"Find Me Demo")

 # Set advertisement parameters according to the Proximity profile. Min interval 1000ms, max
interval 2000ms, use all 3 channels
 call gap_set_adv_parameters(1600, 3200, 7)

 # Start advertisement and enable pairing mode
 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)
 call sm_set_bondable_mode(1)
end

Listen for GATT write events
event attributes_value(connection, reason, handle, value_len, value)

 # Put display to command mode and move cursor to position 40
 call hardware_io_port_write(1,$3,$1)
 call hardware_spi_transfer(0,1,"\xc0")

 #display to data mode
 call hardware_io_port_write(1,$3,$3)

 # Read value and enable corresponding alert
 level=value(0:1)
 if level=0 then
 call hardware_spi_transfer(0,10,"No Alert ")
 end if
 if level=1 then
 call hardware_spi_transfer(0,10,"Mild Alert")
 end if
 if level=2 then
 call hardware_spi_transfer(0,10,"High Alert")
 end if
end

Disconnection event listener
event connection_disconnected(handle,result)
 # Restart advertisement
 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)
end

Copyright © 2001-2013 Bluegiga Technologies Page of 46 50

6.9.3 Temperature and battery readings to display

The example below shows how to initialize the display in the BLE development kit and and how to write
temperature and battery (using potentiometer) readings into it.

The supported commands can be found from the displays data sheet as well the initialization sequence.

SPI configuration in hardware.xml
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

DKBLE112 display, battery and temperature sensors

dim string(3)
dim milliv
dim tmp(4)
dim offset
dim celsius

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)
 # Initialize the display (see NHD-C0216CZ-FSW-FBW-3V3 data sheet)
 call hardware_io_port_write(1,$7,$1)
 call hardware_io_port_config_direction(1,$7)
 call hardware_spi_transfer(0,11,"\x30\x30\x30\x39\x14\x56\x6d\x70\x0c\x06\x01")
 call hardware_io_port_write(1,$7,$3)

 # Write "Batt.: " to the display.
 call hardware_spi_transfer(0,7,"Batt.: ")

 # Change display data address
 call hardware_io_port_write(1,$7,$1)
 call hardware_spi_transfer(0,1,"\xc0")

 # Write "Temp.: " to the displays 2nd line
 call hardware_io_port_write(1,$7,$3)
 call hardware_spi_transfer(0,7,"Temp.: ")

 # Start timer @ ~2sec interval
 call hardware_set_soft_timer($ffff, 0 ,0)
end

Timer event listener
event hardware_soft_timer(handle)
 #read potentiometer for battery
 call hardware_adc_read(6,1,2)
 #read internal temperature
 call hardware_adc_read(14,3,0)
end

Copyright © 2001-2013 Bluegiga Technologies Page of 47 50

DKBLE112 display, battery and temperature sensors (CONTINUED)

#ADC event listener
event hardware_adc_result(input,value)

 # Received battery reading
 if (input = 6) then
 #Convert HEX to STRING
 milliv=value/11+8
 tmp(0:1) = (milliv/1000) + (milliv / 10000*-10) + 48
 tmp(1:1) = (milliv/100) + (milliv / 1000*-10) + 48
 tmp(2:1) = (milliv/10) + (milliv / 100*-10) + 48
 tmp(3:1) = (milliv) + (milliv / 10*-10) + 48

 # Change display data address
 call hardware_io_port_write(1,$7,$1)
 call hardware_spi_transfer(0,1,"\x87")

 # Write battery value
 call hardware_io_port_write(1,$7,$3)
 call hardware_spi_transfer(0,4,tmp(0:4))
 call hardware_spi_transfer(0,3," mV")
 end if

 # Received temperature reading
 if (input = 14) then
 offset=-1490

 # ADC value is 12 MSB
 celsius = value / 16
 # Calculate temperature
 # ADC*V_ref/ADC_max / T_coeff + offset
 celsius = (10*celsius*1150/2047) * 10/45 + offset

 #Convert HEX to STRING
 string(0:1) = (celsius / 100) + 48
 string(1:1) = (celsius / 10) + (celsius / -100 * 10) + 48
 string(2:1) = celsius + (celsius / 10 * -10) + 48

 # Change display data address
 call hardware_io_port_write(1,$7,$1)
 call hardware_spi_transfer(0,1,"\xc7")

 # Write temperature value
 call hardware_io_port_write(1,$7,$3)
 call hardware_spi_transfer(0,2,string(0:2))
 call hardware_spi_transfer(0,1,".")
 call hardware_spi_transfer(0,1,string(2:1))
 call hardware_spi_transfer(0,1,"\xf2")
 call hardware_spi_transfer(0,1,"C")
 end if
end

Copyright © 2001-2013 Bluegiga Technologies Page of 48 50

6.10 BGScript tricks

6.10.1 HEX to ASCII

Printing local BT address on the display in DKBLE112

dim t(12)
dim addr(6)
event system_boot(major,minor,patch,build,ll_version,protocol,hw)
 call hardware_io_port_write(1,$7,$1)
 call hardware_io_port_config_direction(1,$7)

 #Initialize the display
 call hardware_spi_transfer(0,11,"\x30\x30\x30\x39\x14\x56\x6d\x70\x0c\x06\x01")
 call hardware_io_port_write(1,$7,$3)

 #Get local BT address
 call system_address_get()(addr(0:6))

 t(0:1) = (addr(5:1)/$10) + 48 + ((addr(5:1)/$10)/10*7)
 t(1:1) = (addr(5:1)&$f) + 48 + ((addr(5:1)&$f)/10*7)
 t(2:1) = (addr(4:1)/$10) + 48 + ((addr(4:1)/$10)/10*7)
 t(3:1) = (addr(4:1)&$f) + 48 + ((addr(4:1)&$f)/10*7)
 t(4:1) = (addr(3:1)/$10) + 48 + ((addr(3:1)/$10)/10*7)
 t(5:1) = (addr(3:1)&$f) + 48 + ((addr(3:1)&$f)/10*7)
 t(6:1) = (addr(2:1)/$10) + 48 + ((addr(2:1)/$10)/10*7)
 t(7:1) = (addr(2:1)&$f) + 48 + ((addr(2:1)&$f)/10*7)
 t(8:1) = (addr(1:1)/$10) + 48 + ((addr(1:1)/$10)/10*7)
 t(9:1) = (addr(1:1)&$f) + 48 + ((addr(1:1)&$f)/10*7)
 t(10:1) = (addr(0:1)/$10)+ 48 + ((addr(0:1)/$10)/10*7)
 t(11:1) = (addr(0:1)&$f) + 48 + ((addr(0:1)&$f)/10*7)

 call hardware_spi_transfer(0,12,t(0:12))
end

6.10.2 UINT to ASCII

To display sensor readings in the display, integer values must be converted to ASCII. Currently there is no
build-in function for doing this in the BGScript, but the following function can be used to convert integers to
ASCII:

a = (rh / 100)

b = (rh / 10) + (rh / -100 * 10)

c = rh + (rh / 10 * -10)

And as BGScript code:

Converting 3 digit interger to ASCII

dim data
dim string(3)

string(0:1) = (data / 100) + 48
string(1:1) = (data / 10) + (data / -100 * 10) + 48
string(2:1) = data + (data / 10 * -10) + 48

To present the string in the display of the evaluation kit please refer to DKBLE112 display initialization --
BGScript

Copyright © 2001-2013 Bluegiga Technologies Page of 49 50

1.

2.
3.

7 BGScript editors

This section contains different tips and tricks for editors and IDEs.

7.1 Notepad ++

Notepad++ is very flexible text editor for programming purposes. Application and documentation can be
downloaded from .http://notepad-plus-plus.org/

7.1.1 Syntax highlight for BGScript

Notepad++ doesn't currently contain syntax highlighting for BGScript by default. You can however download
syntax highlighting rules defined by Bluegiga.

Installing the BGScript syntax highlight rules into Notepad++ is easy:

Download the syntax highlighting rules from
https://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/ble112-bluetooth--smart-module/documentation/
(from the PC Tools section)
Import the highlighting rules to Notepad++ : View->User-Defined Dialogue->Import.
When editing the code, enable syntax highlighting from : Language -> BGscript

Notepad ++: How to create your own Syntax Highlighting scheme

http://sourceforge.net/apps/mediawiki/notepad-plus/index.php?title=User_Defined_Languages

http://notepad-plus-plus.org/
https://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/ble112-bluetooth--smart-module/documentation/
https://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/ble112-bluetooth--smart-module/documentation/
http://sourceforge.net/apps/mediawiki/notepad-plus/index.php?title=User_Defined_Languages

Copyright © 2001-2013 Bluegiga Technologies Page of 50 50

Contact information

Sales: sales@bluegiga.com

Technical support: http://www.bluegiga.com/support/

Orders: orders@bluegiga.com

WWW: http://www.bluegiga.com

Head Office / Finland: Phone: +358-9-4355 060

Fax: +358-9-4355 0660

Sinikalliontie 5 A

02630 ESPOO

FINLAND

Head address / Finland: P.O. Box 120

02631 ESPOO

FINLAND

Sales Office / USA: Phone: +1 770 291 2181

Fax: +1 770 291 2183

Bluegiga Technologies, Inc.

3235 Satellite Boulevard, Building 400, Suite 300

Duluth, GA, 30096, USA

Sales Office / Hong-Kong: Phone: +852 3182 7321

Fax: +852 3972 5777

Bluegiga Technologies, Inc.

Unit 10-18, 32/F, Tower 1, Millennium City 1,

388 Kwun Tong Road, Kwun Tong, Kowloon,

Hong Kong

http://www.bluegiga.com/support/
http://www.bluegiga.com/

	Version History
	Introduction -- BGscript
	What is BGScript?
	BGScript Scripting Language
	BGScript vs. BGAPI

	BGScript Syntax
	Comments
	Variables and Values
	Values
	Variables
	Example

	Global Variables
	Constant Variables
	Buffers
	Using Buffers with Expressions

	Strings

	Expressions
	Commands
	event <event_name> (< event_parameters >)
	if <expression> then [else] end if
	while <expression> end while
	call <command name>(<command parameters>..)[(response parameters)]
	let <variable> = <expression>
	sfloat(mantissa , exponent)
	float(mantissa , exponent)
	memcpy(destination, source , length)
	memcmp(buffer1 , buffer2 , length)
	memset(buffer , value , length)

	Procedures
	Using multiple script files
	import
	export

	BGScript Limitations
	32-bit resolution
	Declaration required before use
	DIM variable size
	Reading internal temperature meter disabled IO interrupts
	Writing data to an endpoint, which is not read
	No interrupts on Port 2
	Performance

	Example BGscripts
	Basics
	Catching system start-up
	Catching Bluetooth connection event
	Catching Bluetooth disconnection event

	Hardware interfaces
	ADC
	I2C
	IO
	IO wake-up
	Writing IO status

	SPI
	Writing SPI
	Reading SPI

	Generating PWM signals

	Timers
	Continuous timer generated interrupt
	Single timer generated interrupt

	USB and UART endpoints
	UART endpoint
	USB endpoint

	Attribute Protocol (ATT)
	Catching attribute write event

	Generic Attribute Profile (GATT)
	Changing device name
	Writing to local GATT database

	PS store
	Writing a PS keys
	Reading a PS keys

	Advanced scripting examples
	Catching IO events and exposing them in GATT

	Bluegiga Development Kit Specific Examples
	Display initialization
	FindMe demo
	Temperature and battery readings to display

	BGScript tricks
	HEX to ASCII
	UINT to ASCII

	BGScript editors
	Notepad ++
	Syntax highlight for BGScript

