

BLUETOOTH SMART SOFTWARE

Implementing Over-the-Air Firmware Upgrade

Tuesday, 04 March 2014

Version 1.7

Bluegiga Technologies Oy

Copyright © 2000-2014 Bluegiga Technologies

All rights reserved.

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications
detailed here at any time without notice and does not make any commitment to update the information
contained here. Bluegiga’s products are not authorized for use as critical components in life support devices
or systems.

The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga
Technologies.

The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies.
All other trademarks listed herein are owned by their respective owners.

Bluegiga Technologies Oy

VERSION HISTORY

Version Comment

1.0 First version

1.1 Hardware reference added

1.2 Minor updates

1.3 Updated reference schematic

1.4 Updated Introduction chapter

1.5

Updated to match the Bluetooth Smart Software v.1.2.2

- external SPI flash board instructions added

- 256kB instructions added

1.6 BLE113-A-256 instructions added

1.7 OTA Data Attribute length fixed to 20 bytes.

Bluegiga Technologies Oy

TABLE OF CONTENTS

1 Introduction ..5

2 Introduction to the Bluegiga Bluetooth Smart Software ..6

2.1 The Bluetooth Smart Stack ...6

2.2 The Bluetooth Smart SDK ..6

2.3 The BGAPI Protocol ...8

2.4 The BGLib Host Library ..9

2.5 BGScript
TM

 Scripting Language ... 10

2.6 The Profile Toolkit .. 11

3 Implementation of OTA Firmware Upgrade ... 12

3.1 Limitations of OTA firmware update .. 12

3.2 Prerequisites .. 13

3.2.1 Reference Schematic .. 13

3.3 Installing the Tools ... 14

3.4 Creating a Project .. 15

3.5 Hardware Configuration ... 16

3.5.1 Creating a Project for BLE113-A-256 .. 17

3.6 Building the OTA Service ... 18

3.7 Writing the BGScript Code ... 19

3.8 Compiling and Installing the Firmware .. 24

3.8.1 Using BLE Update Tool ... 24

3.8.2 Compiling Using bgbuild.exe ... 26

4 Testing the OTA Update with BLEGUI ... 27

4.1 Using BLEGUI ... 27

4.1.1 Discovering the OTA Device .. 27

4.1.2 Checking the OTA Characteristic Handle Values .. 28

4.1.3 Performing the Update ... 29

4.1.4 Verifying the Update .. 29

5 Current Consumption ... 30

6 Contact information .. 31

Bluegiga Technologies Oy

Page 5 of 31

1 Introduction

This application note discusses how to enable and perform Over-the-Air (OTA) firmware upgrade using the
Bluegiga Bluetooth Smart Module and Software

The application note contains a practical example of how to build Bluetooth Smart GATT based OTA update
services with the profile toolkit, how to make a BGScript application that performs the firmware upgrade.

An assumption is made that the reader of this application note is already somewhat familiar with the Bluetooth
Smart SDK.

The OTA feature is available in the Bluetooth Smart Software and SDK v.1.2.2 and newer.

The OTA firmware update either requires an external SPI flash connected to the SPI interface of BLE112 or
BLE113 or 256kB flash version of BLE113 (part number: BLE113-A-256).

Bluegiga Technologies Oy

Page 6 of 31

2 Introduction to the Bluegiga Bluetooth Smart Software

The Bluegiga Bluetooth Smart Software enables developers to quickly and easily develop Bluetooth Smart
applications without in-depth knowledge of the Bluetooth Smart technology. The Bluetooth Smart Software
consist of two parts:

 The Bluetooth Smart Stack

 The Bluetooth Smart Software Development Kit (SDK)

2.1 The Bluetooth Smart Stack

The Bluetooth Smart stack is a fully Bluetooth 4.0 single mode compatible software stack implementing slave
and master modes, all the protocol layers such as L2CAP, Attribute Protocol (ATT), Generic Attribute Profile
(GATT), Generic Access Profile (GAP) and security and connection management.

The Bluetooth Smart is meant for the Bluegiga Bluetooth Smart products such as BLE112, BLE113 and
BLED112 and it runs on the embedded MCU used in these products so no host is needed.

2.2 The Bluetooth Smart SDK

The Bluetooth Smart SDK is a software development kit, which enables the device and software vendors to
develop products on top of the Bluegiga’s Bluetooth Smart hardware and software.

The Bluetooth Smart SDK supports multiple development models and the software developers can decide
whether the application software runs on a separate host (a low power MCU) or whether they want to make
fully standalone devices and execute their code on the MCU embedded in the Bluegiga Bluetooth Smart
modules. The SDK also contains documentation, tools for compiling the firmware, installing it into the
hardware and lot of example application speeding up the development process.

 fully standalone applications using a simple scripting language called BGScript
TM

. Several profiles and
examples are also offered as a part of the Bluetooth Smart Software in order to easily develop the Bluetooth
Smart compatible end products.

Bluegiga’s Bluetooth Smart Software provides a complete development framework for Bluetooth low energy
application implementers.

Bluegiga Technologies Oy

Page 7 of 31

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security
Manager (SM)

Bluegiga BGSCriptTM VM

BGScriptTM application

Bluegiga BGLibTM

(BGAPI parser)

Application

Optional hostOptional host

UART or USB

Generic
Access Profile

(GAP)

L2CAP

Figure 1: Bluetooth Smart Software

The Bluetooth Smart Software architecture is illustrated and it consists of the following components

 The Bluetooth Smart stack implementing the Bluetooth low energy protocol

 BGAPI
TM

APIs that enable the software developers to interface to the Bluetooth Smart Stack

 BGScript
TM

 Virtual Machine (VM) and scripting language which enable application code to be
developed and executed directly on the Bluetooth Smart hardware

 BGLib
TM

 lightweight host library which implements the BGAPI binary protocol and parser and is target
for applications where separate host processor is used to interface to the Bluetooth Smart modules
over UART or USB.

 Profile Toolkit
TM

 is a GATT based profile development tool that enables software developers quickly
and easily to describe the Bluetooth Smart profiles, services and characteristics using simple XML
templates

Each of these components are described in more detail in the following chapters.

Bluegiga Technologies Oy

Page 8 of 31

2.3 The BGAPI Protocol

For applications where a separate host is used to implement the end user application, a transport protocol is
needed between the host and the Bluetooth stack. The transport protocol is used to communicate with the
Bluetooth stack as well to transmit and receive data packets. This protocol is called BGAPI and it's a
lightweight binary based communication protocol designed specifically for ease of implementation within host
devices with limited resources.

The BGAPI protocol is a simple command, response and event based protocol and it can be used over UART
SPI (at the moment not supported by the Bluetooth Smart hardware) or USB interfaces.

Figure 2: BGAPI protocol

The BGAPI provides access for example to the following layers in the Bluetooth Smart Stack:

 Generic Access Profile - GAP allows the management of discoverability and connetability modes
and open connections

 Security manager - Provides access the Bluetooth low energy security functions

 Attribute database - An class to access the local attribute database

 Attribute client - Provides an interface to discover, read and write remote attributes

 Connection - Provides an interface to manage Bluetooth low energy connections

 Hardware - An interface to access the various hardware layers such as timers, ADC and other
hardware interfaces

 Persistent Store - User to access the parameters of the radio hardware and read/write data to non-
volatile memory

 System - Various system functions, such as querying the hardware status or reset it

Bluegiga Technologies Oy

Page 9 of 31

2.4 The BGLib Host Library

For easy implementation of BGAPI protocol an ANSI C host library is available. The library is easily portable
ANSI C code delivered within the Bluetooth Smart SDK. The purpose is to simplify the application
development to various host environments.

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security
Manager (SM)

Bluegiga BGSCriptTM VM

Bluegiga BGLibTM

(BGAPI parser)

Application

Optional hostOptional host

UART or USB

Generic
Access Profile

(GAP)

L2CAP

Figure 3: BGLib host library

Bluegiga Technologies Oy

Page 10 of 31

2.5 BGScriptTM Scripting Language

The Bluetooth Smart SDK Also allows the application developers to create fully standalone devices without a
separate host MCU and run all the application code on the Bluegiga Bluetooth Smart Hardware. The
Bluetooth Smart modules can run simple applications along the Bluetooth Smart stack and this provides a
benefit when one needs to minimize the end product’s size, cost and current consumption. For developing
standalone Bluetooth Smart applications the SDK includes the Script VM, compiler and other BGScript
development tools. BGScript provides access to the same software and hardware interfaces as the BGAPI
protocol and the BGScript code can be developed and compiled with free-of-charge tools provided by
Bluegiga.

Typical BGScript applications are only few tens to hundreds lines of code, so they are really quick and easy to
develop and lots of readymade examples are provides with the SDK.

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security
Manager (SM)

Bluegiga BGSCriptTM VM

BGScriptTM application

Generic
Access Profile

(GAP)

L2CAP

Figure 4: BGScript application model

BGScript code example:

System Started

event system_boot(major, minor, patch, build, ll_version, protocol_version,hw)

 #Enable advertising mode

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)

 #Enable bondable mode

 call sm_set_bondable_mode(1)

 #Start timer at 1 second interval (32768 = crystal frequency)

 call hardware_set_soft_timer(32768)

end

Bluegiga Technologies Oy

Page 11 of 31

2.6 The Profile Toolkit

The Bluetooth Smart profile toolkit a simple set of tools, which can used to describe GATT based Bluetooth
Smart services and characteristics. The profile toolkit consists of a simple XML based description language
and templates, which can be used to describe the devices GATT database. The profile toolkit also contains a
compiler, which converts the XML to binary format and generates API to access the characteristic values.

Figure 5: A profile toolkit example of GAP service

Bluegiga Technologies Oy

Page 12 of 31

3 Implementation of OTA Firmware Upgrade

In this chapter we describe and discuss an actual implementation of the OTA firmware upgrade and the
necessary steps. The implementation consists of following steps:

1. Prerequisites

2. Installing the tools

3. Setting up the project

4. Defining hardware configuration

5. Building a GATT based OTA server service database with profile toolkit

6. Writing a simple BGScript that performs the firmware upgrade

7. Compiling the GATT data base and BGScript into a binary firmware

8. Installing the firmware into BLE112 or BLED112 hardware

9. Testing it out

3.1 Limitations of OTA firmware update

At the moment the OTA firmware update has the following limitations:

 Hardware configuration cannot be updated via OTA firmware update

 Bootloader cannot be changed with OTA firmware update

 OTA update requires at least 256kB flash memory (internal or external SPI flash)

 At the moment the OTA bootloader only works the Winbond SPI flash parts

Bluegiga Technologies Oy

Page 13 of 31

3.2 Prerequisites

In order to perform the OTA firmware update at least 256kB of flash memory is needed. The standard BLE112
and BLE113 Bluetooth Smart Modules only have a 128kB flash memory, but you can simply connect a low
cost SPI flash memory to one of the SPI interfaces in the BLE112 or BLE113 modules. Also a variant of
BLE113 exist with on-board 256kB flash and it does not require an external SPI flash.

External SPI flash memories are typically very low cost and can be as cheap as $0.2-0.3.

Below is a reference schematic how to connect a 2 Mbit Winbond W25X20CL flash chip to the BLE113
Bluetooth Smart Module. Since February 2014 Both BLE112 and BLE113 development kits are supplied with
a small carrier board containing a small carrier board with the Winbond flash memory.

3.2.1 Reference Schematic

The external flash is powered from one of the high current IO’s on the BLE112 or BLE113. In this reference
the flash supply is taken from P1_0. When the external flash is used, P1_0 is first driven high by the software
in order to power up to power up the flash. When the flash is not used, all the lines connected to the flash are
driven low to avoid leakage currents.

When the flash is not used the chip select output of the module is in high impedance so it requires a pull-up
resistor. The modules MISO line requires a pull-up resistor to make sure it is pulled low instantly with the
supply voltage when the flash is not used.

Figure 6: Example schematic

Bluegiga Technologies Oy

Page 14 of 31

3.3 Installing the Tools

1. Download the latest install the Bluegiga Bluetooth Smart SDK from the Bluegiga web site

2. Run the executable

3. Follow the on-screen instructions and install the SDK to the desired directory

4. Perform a Full Installation (BLE SDK and TI tools)

Figure 7: Installing Bluegiga Bluetooth Smart SDK

Bluegiga Technologies Oy

Page 15 of 31

3.4 Creating a Project

The project is started by creating a project file. The file is a simple XML formatted document and defines all
the other files the included in the project. An example of a complete project file is shown below:

Figure 8: Project file

 The project configuration is described within the <project> tags

 <gatt> tag defines the .XML file containing the GATT data base

 <hardware> tag defines the .XML file containing the hardware configuration

 <script> tag defines the .BGS file containing the BGScript code.

 <image> tag defines the output .HEX file containing the firmware image

 <device type> tag defines if the project is meant for BLE113 hardware

 <boot fw> tag defines which interface is enabled for DFU firmware upgrades. bootota feature is used
since this example uses the OTA boot loader.

 <ota> tag defines the OTA firmware update file which is the actual firmware update file uploaded to
the device over a Bluetooth LE connection.

The exact syntax and options of the project file can be found from the BLE112 and BLE113 Configuration
Guide and the syntax is not fully described in this document.

Bluegiga Technologies Oy

Page 16 of 31

3.5 Hardware Configuration

Once the project is configured the next logical step is the hardware configuration of your Bluetooth Smart
module. In this document we use the BLE113 Bluetooth Smart Module as a target platform.

If the default project template is used, the file where the hardware configuration remains is called
hardware.xml.

An example of a hardware configuration used in OTA demo application is shown below.

Figure 9: Hardware configuration for the BLE112 Bluetooth Smart Module

 The hardware configuration is described within the <hardware> tags

 <sleeposc> tag defines whether the sleep oscillator is enabled or not. The Sleep oscillator allows low
power sleep modes to be used. The BLE113 does incorporate the sleep oscillator so this value should
be set to true especially in the applications where power consumption matters. The PPM value
defines the sleep oscillator accuracy and MUST not be changed.

 <script> tag defines if BGScript VM and application are present. Since the example uses a BGscript
application to perform the firmware upgrade we set this value to true.

 <txpower> tag defines the TX power level and the value 15 configures the maximum TX power level.

 <usart> tag is used to enable the SPI master interface at 2Mbps. The OTA firmware is uploaded to an
external SPI flash (128kB of larger) and the SPI interface is used as the interface to the external flash
chip.

 <pmux regulator_pin> configuration defines which GPIO pin is used to control an external DC/DC
converter. An external DC/DC converter can be used to lower the peak power consumption during
radio activity and the Bluetooth Smart software will automatically enable or disable the DC/DC based
on the software status. The DKBLE112 and DKBLE113 development kits have the DC/DC converter,
so this feature is enabled.

 <sleep> tag is used to enable the low power sleep modes on the device

 <otaboot> tag is used to define the SPI interface where the external SPI flash is located. This tag is
only needed if the external SPI flash is used.

The exact syntax and options of the project file can be found from the BLE112 and BLE113 Configuration
Guide and the syntax is not fully described in this document.

Bluegiga Technologies Oy

Page 17 of 31

3.5.1 Creating a Project for BLE113-A-256

BLE113-A-256 is a product variant of BLE113 with built-in 256kB flash memory and it does not require an
external SPI flash to be used. A few changes in the project and hardware configuration need to be made for
the BLE113-A-256 part and they are shown below.

Figure 10: BLE113-A-256 project file

 <device type> tag defines if the project is meant for BLE113 hardware and memory=”256” indicates
that internal 256kB flash is available

The following change is needed to the application configuration file which is used to allocate the flash space
needed for the firmware update to be loaded over-the air.

Figure 11: Config file for BLE113-A-256

 <user data> tag is used to allocate all the extra 128kB flash space for the firmware update.

Since there is no need to have the SPI interface configured for the external SPI flash the hardware
configuration for BLE113-A-256 does not need to configure the SPI interface settings.

Figure 12: BLE113-A-256 hardware configuration

Bluegiga Technologies Oy

Page 18 of 31

3.6 Building the OTA Service

This section discusses the implementation of OTA GATT service using the Profile Toolkit
TM

.

The figure below shows the OTA service required in the GATT database for the OTA update to work the
service uses a 128-bit manufacturer specific UUID for both the service and the characteristics.

Figure 13: OTA GATT Service

OTA service UUID: 1d14d6ee-fd63-4fa1-bfa4-8f47b42119f0

Two characteristics are required in the OTA service and they are:

Characteristic UUID Type Length Support Security Properties

OTA Control Point
Attribute

f7bf3564-fb6d-4e53-
88a4-5e37e0326063

hex 1 byte Mandatory none Write

OTA Data Attribute
984227f-34fc-4045-
a5d0-2c581f81a153

hex 20 bytes Mandatory none
Write without
response

Table 1: OTA service characteristics description

The OTA control point attribute is used to control the firmware upgrade process between the device that will
be updated and the device that performs the update it is a write only attribute to the control can only made by
the device that performs the update. The OTA control attribute has the user property enabled, which means
that the BGScript application will need to read to data and acknowledge it to the sender and the
acknowledgement is NOT automatically handled by the Bluetooth stack.

The 2
nd

 attribute is on the other hand used to transmit the data from the device that performs the update to the
device that is being updated. It’s a write without response so acknowledgements will not be passed to the
application level, but handled automatically by the Bluetooth stack.

Bluegiga Technologies Oy

Page 19 of 31

3.7 Writing the BGScript Code

The OTA example implements a simple BGScript application that demonstrates the OTA firmware capability
and it can be used as an example and starting point to integrate the OTA firmware update to real applications.
The application is implemented with BGScript scripting language and the code is explained in this chapter.

The BGScript code enables advertisements on the device so it can be discovered and connected by a remote
device and it also receives the firmware update data from the remote device and stores it to an external SPI
flash. Once the firmware data has been fully received the script initiates the actual update process, which is
then handled by the OTA boot loader, which was enabled in the hardware configuration.

#init gap mode

event system_boot(major ,minor ,patch ,build ,ll_version ,protocol_version ,hw)

 #Set device to advertisement mode and allow undirected connections

 call gap_set_mode(2,2)

 # Initialize the DFU pointer

 dfu_pointer=0

 # Inti Flash retry counter and MAX retries

 retry_counter=0

 max_retries=10

 # set power pin as output and pull down

 # also set p1.1 to output (does not have internal pull-resistor)

 call hardware_io_port_config_pull(1,$7,1)

 call hardware_io_port_write(1,$7,0)

 call hardware_io_port_config_direction(1,$3)

end

Bluegiga Technologies Oy

Page 20 of 31

To handle the incoming commands and DFU data from the device (DFU application) an event handler for
received data must be written. The data received from the remote end can be handled with the

attributes_value (…) event listener, which will catch an event whenever a GATT characteristic is written.

In the example application the handler only checks of the OTA Control Point Attribute or OTA Data
Attribute are written. The OTA Control Point Attribute carries commands such as flash erase or DFU boot
and the OTA Data Attribute carries the actual firmware update.

The event handled code is below and

Incoming data event listener

Handles OTA Control Point Attribute (commands) and OTA Data Attribute (firmware update) writes

and performs the necessary actions

event attributes_value(connection, reason, handle, offset, value_len, value_data)

 # save connection handle, is always 0 if only slave

 curr_connection=connection

 # Check if OTA control point attribute is written by the remote device and execute the command

 # Command 0 : Erase flash block 0 (0x0-0x1FFFF)

 # Command 1 : Erase flash block 1 (0x10000-0x3FFFF)

 # Command 2 : Reset DFU data pointer

 # Command 3 : Boot to DFU mode

 # In case of errors application error code 0x80 is returned to the remote device

 if handle = ota_control then

 #attribute is user attribute, reason is always write_request_user

 if value_len >1 || offset >0 then

 # Not a valid command -> report application error code : 0x80

 call attributes_user_write_response(connection, $80)

 else

 command=value_data(0:1)

 if command = 0 then # Command 0 received -> Erase block 0

 #reset retry counter

 retry_counter = 0

 # pull power and chip select pins up

 # write enable, cs down

 call hardware_io_port_config_direction(1,$7)

 call hardware_spi_transfer(0,1,"\x06")

 call hardware_io_port_config_direction(1,$3)

 # erase block 0 : 0-1ffff

 call hardware_io_port_config_direction(1,$7)

 call hardware_spi_transfer(0,4,"\xd8\x00\x00\x00")

 call hardware_io_port_config_direction(1,$3)

 # start timer to poll for erase complete

Bluegiga Technologies Oy

Page 21 of 31

 call hardware_set_soft_timer(6000,0,1)

 end if

 if command = 1 then # Command 1 received -> Erase block 1

 #write enable

 call hardware_io_port_config_direction(1,$7)

 call hardware_spi_transfer(0,1,"\x06")

 call hardware_io_port_config_direction(1,$3)

 # erase block 1 : 10000-3ffff

 call hardware_io_port_config_direction(1,$7)

 call hardware_spi_transfer(0,4,"\xd8\x01\x00\x00")

 call hardware_io_port_config_direction(1,$3)

 # start timer to poll for erase complete

 call hardware_set_soft_timer(6000,0,1)

 end if

 if command = 2 then # Command 2 received -> Erase DFU pointer

 dfu_pointer=0

 call attributes_user_write_response(curr_connection, 0)

 end if

 if command = 3 then # Command 3 received -> Booth to DFU mode

 call system_reset(1)

 end if

 if command = 4 then # Command 4 received ->

 #pull power and chip select pins up

 call hardware_io_port_write(1,$1,$1)

 call attributes_user_write_response(curr_connection, $0)

 end if

 if command > 4 then # Unknown command -> report application error code : 0x80

 call attributes_user_write_response(curr_connection, $80)

 end if

 end if

 end if

Bluegiga Technologies Oy

Page 22 of 31

Check if OTA data attribute is written which carries the firmware update

 # and store the data to the external SPI flash

 if handle = ota_data then

 # NOTE: when programming page, address cannot wrap over 256 byte boundary.

 # This must be handled in the remote DFU application

 # This is write no response attribute, no need to handle response to other end

 # TODO: handle zero length writes

 spi_response(0:1)=2 # page program command

 # flip endianness for address

 tmp(0:4)=dfu_pointer

 spi_response(1:1)=tmp(2:1)

 spi_response(2:1)=tmp(1:1)

 spi_response(3:1)=tmp(0:1)

 # enable SPI flash write mode

 call hardware_io_port_config_direction(1,$7)

 call hardware_spi_transfer(0,1,"\x06")

 call hardware_io_port_config_direction(1,$3)

 #write data

 call hardware_io_port_config_direction(1,$7)

 call hardware_spi_transfer(0,4,spi_response(0:4))

 # send data in next transfer, leave chip select asserted

 call hardware_spi_transfer(0,value_len,value_data(0:value_len))

 call hardware_io_port_config_direction(1,$3)

 # it can take up to 800 us for full page to program

 # loop couple of times for write to complete

 call hardware_io_port_config_direction(1,$7)

 call hardware_spi_transfer(0,2,"\x05\x00")(result,channel,spi_len,spi_response(0:2))

 # start polling

 a = spi_response(1:1)

 while a&1

 call hardware_spi_transfer(0,1,"\x00")(result,channel,spi_len,spi_response(0:1))

 a = spi_response(0:1)

 end while

 call hardware_io_port_config_direction(1,$3)

 # increase DFU offset

 dfu_pointer=dfu_pointer+value_len

 end if

end

Bluegiga Technologies Oy

Page 23 of 31

The description of the BGScript functions and events can be found from the Bluetooth Smart Software API
reference document.

An additional event handler is needed to check if the flash writes are ready and more data can be received
from the remote end. The event handler below checks if the flash is ready or waits if it’s not. Once the flash is
ready a status code 0 is sent to the remote device indicating that more data can be received.

Timer expired event handler

Poll flash and if it’s ready, and send response to the remote device (DFU application)

event hardware_soft_timer(handle)

 if handle=0 then

 call hardware_io_port_config_direction(1,$7)

 call hardware_spi_transfer(0,2,"\x05\x00")(result,channel,spi_len,spi_response(0:3))

 call hardware_io_port_config_direction(1,$3)

 # Check if max retries have been reached

 if (retry_counter < max_retries) then

 # Increase retry counter

 retry_counter = retry_counter + 1

 else

 # Could not talk to the flash : Report error core 0x90

 call attributes_user_write_response(curr_connection, $90)

 end if

 # Flash was not ready – check again later

 if spi_response(1:1) & 1 then

 call hardware_set_soft_timer(6000,0,1)

 else

 # Flash was ready, send response to the remote device (DFU application)

 call attributes_user_write_response(curr_connection, 0)

 end if

 end if

end

The final event handler simple makes the device discoverable and connectable in case of a disconnection.

Disconnection event handler

Makes the device visible and connectable

event connection_disconnected(handle,result)

 # in case if disconnect, return to advertisement mode

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)

end

Bluegiga Technologies Oy

Page 24 of 31

3.8 Compiling and Installing the Firmware

3.8.1 Using BLE Update Tool

When you want to test your project, you need to compile the hardware settings, the GATT data base and
BGScript code into a firmware binary file. The easiest way to do this is with the BLE Update tool that can be
used to compile the project and install the firmware to a Bluetooth Smart Module using a CC debugger tools

In order to compile and install the project:

1. Connect CC debugger to the PC via USB

2. Connect the CC debugger to the debug interface on the BLE112 or BLE113

3. Press the button on CC debugger (or the development kir) and make sure the led turns green

4. Start BLE Update tool

5. Make sure the CC debugger is shown in the Port drop down list

6. Use Browse to locate your project file (for example BLE112-project.bgproj)

7. Press Update

BLE Update tool will compile the project and install it into the target device.

Figure 14: Compile and install with BLE Update tool

Note:

You can also double clikc the .BGPROJ file and it will automatically open the BLE Update tool.

If you have BLE112 or BLE113 Development Kit v.1.2 with the on-board CC Debugger, do the following:

 Connect the DEBUGGER USB port to the PC

 Turn the DEBUGGER switch to MODULE

 Press the RESET DEBUGGER button and make sure the DEBUGGER led turns green

Bluegiga Technologies Oy

Page 25 of 31

The View Build Log opens up a dialog that shows the bgbuild compilere output and the RAM and Flash
memory allocations.

Figure 15: BLE Update build log

Bluegiga Technologies Oy

Page 26 of 31

3.8.2 Compiling Using bgbuild.exe

The project can also be compiled with the bgbuild.exe command line compiler. The BGBuild compiler simply
generates the firmware image file, which can be installed to the BLE112 or BLE113.

In order to compile the project using BGBuild:

1. Open Windows Command Prompt (cmd.exe)

2. Navigate to the directory where your project is

3. Execute BGbuild.exe compiler

Syntax: bgbuild.exe <project file>

Figure 16: Compiling with BGBuild.exe

If the compilation is successful a .HEX file is generated, which can be installed into a Bluetooth Smart Module.

On the other hand if the compilation fails due to syntax errors in the BGScript or GATT files, and error
message is printed.

Bluegiga Technologies Oy

Page 27 of 31

4 Testing the OTA Update with BLEGUI

4.1 Using BLEGUI

This section describes how to test the OTA update example using BLEGUI software.

BLEGUI is a simple PC utility that can be used to control a Bluegiga Bluetooth Smart device over UART or
USB. BLEGUI software sends the BGAPI commands to the device and parses the responses and has a
simple user interface to display device data.

4.1.1 Discovering the OTA Device

 Connect for example a BLED112 USB dongle to your PC

 Make use the USB/CDC driver gets installed and a Virtual COM port gets created

 Open BLEGUI software and attach the device in the virtual COM port to the BLEGUI

As soon as the OTA example device is powered on it starts to advertise. A BLED112 USB dongle can for
example be used to scan for the sensor.

 Enable Active Scanning

 Press Set Scan Parameters

 Select Generic scan mode

 Press Scan

If the OTA device is powered on and the OTA example application is installed to is you should see the device
in the BLEGUI software.

Figure 17: Discovering the OTA device

Bluegiga Technologies Oy

Page 28 of 31

4.1.2 Checking the OTA Characteristic Handle Values

 Connect the OTA device

 Perform a GATT service discovery

 Select the OTA service (UUID: 1d14d6ee-fd63-4fa1-bfa4-8f47b42119f0)

 Perform a descriptors discovery

 Note the characteristic handle values for the OTA Control Point Attribute and OTA Data Attribute
(15 and 18 in the example application)

Figure 18: OTA characteristic handle values

Bluegiga Technologies Oy

Page 29 of 31

4.1.3 Performing the Update

In order to perform the OTA firmware upgrade do the following steps

 Go to Commands -> DFU -> Over the Air Upgrade menu

 Select the desired firmware file (.OTA file)

 Select the connection handle of the device you want to update

o Double check that the connection exists

 Write the OTA Control Point Attribute and OTA Data Attribute handles to the dialog

 Press Upload

Figure 19: Performing OTA Update

4.1.4 Verifying the Update

Wait for the update the finish and verify you see a message OTA Completed message in the dialog and not
an error message.

Figure 20: Successful OTA Firmware Update

Bluegiga Technologies Oy

Page 30 of 31

5 Current Consumption

The average current consumption of BLE113 during OTA firmware update with slow clock disabled is 10.5
mA. The peak current is 27 mA. This assumes maximum TX power and the use of external DC/DC converter.

Bluegiga Technologies Oy

Page 31 of 31

6 Contact information

Sales: sales@bluegiga.com

Technical support: www.bluegiga.com/support/

Orders: orders@bluegiga.com

WWW: www.bluegiga.com

 www.bluegiga.hk

Head Office / Finland:

Phone: +358-9-4355 060

Fax: +358-9-4355 0660

Sinikalliontie 5A

02630 ESPOO

FINLAND

Postal address / Finland:

P.O. BOX 120

02631 ESPOO

FINLAND

Sales Office / USA:

Phone: +1 770 291 2181

Fax: +1 770 291 2183

Bluegiga Technologies, Inc.

3235 Satellite Boulevard, Building 400, Suite 300

Duluth, GA, 30096, USA

Sales Office / Hong-Kong:

Elite Business Center

15/F, Millenium City 3

370 Kwun Tong Road

Kwun Tong

Kowloon

Hong Kong

mailto:sales@bluegiga.com
http://www.bluegiga.com/support/
mailto:orders@bluegiga.com
http://www.bluegiga.com/
http://www.bluegiga.hk/

