

BLUETOOTH® SMART GLUCOSE SENSOR

APPLICATION NOTE

Thursday, 24 January 2013

Version 1.0

Bluegiga Technologies Oy

Copyright © 2000-2013 Bluegiga Technologies

All rights reserved.

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications
detailed here at any time without notice and does not make any commitment to update the information
contained here. Bluegiga’s products are not authorized for use as critical components in life support devices
or systems.

The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga
Technologies.

The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies.
All other trademarks listed herein are owned by their respective owners.

Bluegiga Technologies Oy

VERSION HISTORY

Version Comment

1.0 First version

Bluegiga Technologies Oy

TABLE OF CONTENTS

1 Introduction ..5

2 What is Bluetooth Smart technology? ...6

3 Glucose profile ...7

3.1 Description ..7

3.2 GATT Server: Service requirements ..8

3.3 GATT Server: Attribute requirements ...8

3.4 Recommended connection establishment procedures ..9

3.5 Security requirements ...9

4 Implementing a Glucose Sensor .. 10

4.1 Creating a project (project.xml) .. 11

4.2 Hardware configuration (hardware.xml) ... 12

4.3 GATT database for Glucose Sensor (gatt.xml) .. 13

4.4 Application Configuration (config.xml) ... 17

4.5 BGScript for Glucose Sensor (glucose_sensor.bgs) .. 18

4.6 Compiling and installing the firmware .. 23

5 Testing the Glucose Sensor ... 27

5.1 Testing with BLEGUI software ... 27

5.2 Testing with iPhone or iPad ... 33

6 Appendix ... 37

6.1 External resources ... 37

7 Contact information .. 38

Bluegiga Technologies Oy

Page 5 of 38

1 Introduction

This application note discusses how to build a Bluetooth 4.0 glucose profile sensor using Bluegiga’s Bluetooth
4.0 software development kit, for use with a DKBLE112 hardware evaluation board and an Apple iPhone or
iPad, or other Bluetooth Smart device capable of acting as a glucose collector. The application note contains a
practical example of how to build a GATT-based Glucose Profile and how to make a basic glucose sensor
device using BGScript scripting language, including authenticated bonding (encryption) and on-module
glucose record storage and retrieval.

Various other features of the development kit are also demonstrated in this project for the sake of instruction,
such as SPI communication to the on-board LCD, potentiometer ADC readings to simulate glucose levels, and
UART debug data output.

Note that the glucose profile as implemented is an official profile standardized by the Bluetooth SIG.

Bluegiga Technologies Oy

Page 6 of 38

2 What is Bluetooth Smart technology?

Bluetooth low energy (Bluetooth 4.0) is a new, open standard developed by the Bluetooth SIG. It’s targeted to
address the needs of new modern wireless applications such as ultra-low power consumption, fast connection
times, reliability and security. Bluetooth low energy consumes 10-20 times less power and is able to transmit
data 50 times quicker than classical Bluetooth solutions.

Bluetooth low energy is designed for new emerging applications and markets, but it still embraces the very
same benefits we already know from the classical, well established Bluetooth technology:

 Robustness and reliability - The adaptive frequency hopping technology used by Bluetooth low
energy allows the device to quickly hop within a wide frequency band, not just to reduce interference
but also to identify crowded frequencies and avoid them. On addition to broadcasting Bluetooth low
energy also provides a reliable, connection oriented way of transmitting data.

 Security - Data privacy and integrity is always a concern is wireless, mission critical applications.
Therefore Bluetooth low energy technology is designed to incorporate high level of security including
authentication, authorization, encryption and man-in-the-middle protection.

 Interoperability - Bluetooth low energy technology is an open standard maintained and developed by
the Bluetooth SIG. Strong qualification and interoperability testing processes are included in the
development of technology so that wireless device manufacturers can enjoy the benefit of many
solution providers and consumers can feel confident that equipment will communicate with other
devices regardless of manufacturer.

 Global availability - Based on the open, license free 2.4GHz frequency band, Bluetooth low energy
technology can be used in world wide applications.

 There are two types of Bluetooth 4.0 devices:

 Bluetooth 4.0 single-mode devices that only support Bluetooth low energy and are optimized for
low-power, low-cost and small size solutions.

 Bluetooth 4.0 dual-mode devices that support Bluetooth low energy and classical Bluetooth
technologies and are interoperable with all the previously Bluetooth specification versions.

Key features of Bluetooth low energy wireless technology include:

 Ultra-low peak, average and idle mode power consumption

 Ability to run for years on standard, coin-cell batteries

 Low cost

 Multi-vendor interoperability

 Enhanced range

Bluetooth low energy is also meant for markets and applications, such as:

 Automotive

 Consumer electronics

 Smart energy

 Entertainment

 Home automation

 Security & proximity

 Sports & fitness

http://www.youtube.com/watch?v=KW-TKBBiFss
http://www.youtube.com/watch?v=9G19p4ec_vM
http://www.youtube.com/watch?v=xjm9YyV2yeM
http://www.youtube.com/watch?v=3bifVc_iC2Y
http://www.youtube.com/watch?v=Ei_L1Pu6YuI
http://www.youtube.com/watch?v=TUwedeshPJU
http://www.youtube.com/watch?v=uQuGvBci5CQ

Bluegiga Technologies Oy

Page 7 of 38

3 Glucose profile

3.1 Description

The Glucose Profile enables a device to connect and interact with a glucose sensor for use in consumer and
professional healthcare applications. The full Bluetooth SIG specification for the Glucose Profile is available in
PDF form here:

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=248025

An organized table structure of the Glucose profile as defined by the Bluetooth SIG is available here:

http://developer.bluetooth.org/gatt/profiles/Pages/ProfileViewer.aspx?u=org.bluetooth.profile.glucose.xml

(Other links present in this document to services and characteristics also go to the Bluetooth SIG service
browser online.)

The Glucose Profile defines two roles:

1. Glucose Sensor

The sensor is the devices which has the actual glucose measurement device and provides the GATT structure
and data storage for use by a collector (see below). A glucose sensor must include at least a partial
implementation of the Device Information service as well as the sensor portion of the Glucose service, as
defined by the Bluetooth SIG.

2. Collector

The collector is the device which gathers glucose data from the sensor. In this example, we will do partial
testuse an iOS application provided by Nordic Semiconductor for a comprehensive GUI-based collector. This
application note does not discuss the implementation of a collector itself.

The figure below shows the relationship of these two roles.

Glucose Sensor

Device Information
Service

Glucose Service

Glucose Measurement

Glucose Measurement
Context

Glucose Feature

Record Access
Control Point

Generic Access Service

Collector

Device Information
Service

Generic Access Service

Figure 1: Glucose Profile roles

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=248025
http://developer.bluetooth.org/gatt/profiles/Pages/ProfileViewer.aspx?u=org.bluetooth.profile.glucose.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.glucose.xml

Bluegiga Technologies Oy

Page 8 of 38

3.2 GATT Server: Service requirements

The table below describes the service requirements.

Service UUID Glucose Sensor

GAP service 1800 Mandatory

Glucose service 1808 Mandatory

Device Information service 180A Mandatory

Table 1: Service requirements

3.3 GATT Server: Attribute requirements

The table below describes the structure and requirements for the attribute used in the Glucose Service. (Links
go to the Bluetooth SIG online characteristic definition browser for that attribute)

Characteristic UUID Length Type Support Security Properties

Glucose Measurement 2A18
Variable
(max 17B)

Hex Mandatory None Notify

Glucose Measurement Context 2A34
Variable
(max 17B)

Hex Optional None Notify

Glucose Feature 2A51 2 bytes Hex Mandatory None Read

Record Access Control Point 2A52
Variable
(typical 2B)

Hex Mandatory
Writeable with
Authentication

Write, Indicate

Table 2: Glucose Service structure (sensor only)

 Each UUID in this service is an official, adopted 16-bit ID for the characteristic

 The Glucose Measurement and Context length is variable depending on the features supported by
the sensor. This demo emulates all specified features (though most data is arbitrarily chosen only for
demo purposes). and has a length of 17 bytes. This fits within the maximum payload size for indicated
values (20 bytes).

 Security is not necessary to connect to a glucose sensor in order to read a single measurement taken
during connection, but it is required to access historical records which may be stored on the device.
These records are only accessible through the Record Access Control Point. In order to write
control commands to this attribute, the collector must bond (a.k.a. pair) with the sensor. A collector
which connects but does not pair will not be allowed to write any values to the control point, and
therefore will not be able to access any stored records.

 Glucose Measurement and the optional Glucose Measurement Context cannot be directly read,
but may only be pushed (via notifications) from the sensor to the collector, after the collector enables
client notifications for those services. Glucose Feature contains a constant value describing the
feature set of the sensor device, and may be read as desired by the collector.

http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_measurement.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_measurement_context.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_feature.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.record_access_control_point.xml

Bluegiga Technologies Oy

Page 9 of 38

3.4 Recommended connection establishment procedures

3.4.1 Un-bonded devices

Advertisement duration Parameter Value

First 30 seconds (fast connection) Advertising interval 20ms to 30ms

After 30 seconds (reduced power) Advertising interval 1000ms to 2500ms

Table 3: Advertising parameters for un-bonded Glucose Sensor

 The Glucose Sensor should use the GAP Limited Discoverable Mode with connectable undirected
advertising events when establishing an initial connection. (For simplicity, this demo implementation uses
GAP General Discoverable Mode.)

 If the connection is not established within a time limit, the sensor may exit GAP Connectable mode. (For
simplicity, this demo implementation does not ever exit GAP Connectable mode.)

3.4.2 Bonded devices

The following produce is uses for bonded devices:

 A Glucose Sensor shall enter the GAP Undirected Connectable Mode either when commanded by the
user to initiate a connection to a Collector or when a Glucose Sensor has one or more stored records to
send to a previously connected Collector.

 The Glucose Sensor should write the address of the target Collector in its White List and set its controller
advertising filter policy to ‘process scan and connection requests only from devices in the White List’. The
advertisement parameters should be as in Table 3.

 If the connection is not established within a time limit, the sensor may exit GAP Connectable mode.

3.4.3 Link loss procedure

When connection is terminated due to link loss the sensor should attempt reconnection with the Collector by
entering the GAP connectable mode using the recommended parameters from Table 3.

3.5 Security requirements

The Glucose Sensor shall bond with the Collector.

When bonding is used:

1. All supported characteristics specified by the Glucose Service shall be set to Security Mode 1 and
either Security Level 2 or 3.

2. The Glucose Sensor shall use the SM Slave Security Request procedure to inform the Collector of its
security requirements.

3. All characteristics specified by the Device Information Service that are relevant to this profile should be
set to the same security mode and level as the characteristics in the Glucose Service.

Bluegiga Technologies Oy

Page 10 of 38

4 Implementing a Glucose Sensor

The chapter contains step by step instructions how to implement a stand-alone Glucose Sensor with
Bluegiga’s Bluetooth 4.0 Software Development Kit. The chapter is split into following steps:

1. Creating a project

2. Defining hardware configuration

3. Building Glucose and Device Information Services with Profile Toolkit

4. Writing BGScript source code

5. Compiling the GATT database and BGScript into binary firmware

6. Installing the firmware into BLE112 or DKBLE112 hardware

The actual project comes as an example with the Bluegiga’s Bluetooth low energy Software Development Kit

v.1.1.1 or newer under the \example\glucose_sensor\ directory.

Bluegiga Technologies Oy

Page 11 of 38

4.1 Creating a project (project.xml)

The Glucose Sensor implementation is started by first creating a project file (project.xml), which defines the
resources use by the project and the firmware output file. This project file includes a description of each of the
main elements of the project.

Figure 2: Project file (project.xml)

 <gatt> Defines the XML file containing the GATT database.

 <hardware> Defines the XML file containing the hardware configuration.

 <script> Defines the BGScript file which contains the BGScript code.

 <config> Defines the application configuration file.

 <image> Defines the output HEX file containing the firmware image.

<?xml version="1.0" encoding="UTF-8" ?>

<project>

 <gatt in="gatt.xml" />

 <hardware in="hardware.xml" />

 <script in="glucose_demo.bgs" />

 <config in="config.xml" />

 <image out="out.hex" />

</project>

Bluegiga Technologies Oy

Page 12 of 38

4.2 Hardware configuration (hardware.xml)

The hardware.xml file contains the hardware configuration for BLE112 device. It describes which interfaces
and functions are used and what their specific properties are.

Figure 3: Hardware configuration for Glucose Sensor

 <sleeposc> The 32.768KHz sleep oscillator is enabled. Sleep oscillator allows the device to
 enter power mode 1 or 2 between Bluetooth operations, for example between
 connection intervals. This should always be used.

 <usb> USB interface is disabled to save power and allow the device to go to low-power
 modes. If USB is enabled, no low-power modes will be used.

 <txpower> TX power is set to +3dBm value. Every step represents roughly a 1dBm change
 and the range of the parameter is 15 to 0, corresponding TX power values
 from +3dBm to -24dBm.

 <script> Scripting is enabled as the Glucose Sensor application is implemented with
 with the BGScript scripting language.

 <pmux> Enables automatic management of the DC/DC converter on the DKBLE112.
 This prevents momentarily large current draws from the CR2032 battery during
 transmissions, if battery power is used, and will extend the life of the battery.

 <usart channel=”0”> Enables one USART interface used for SPI data communications. In this
 configuration, USART 0 is used in alternate configuration 2, which allows
 communication with the SPI-based LCD on the DKBLE112.

 <usart channel=”1”> Enables the second USART interface used for UART data communications. In
 this configuration, USART 1 is used in alternate configuration 1 and with 115200
 bps baud rate. RTS/CTS flow control is disabled, since this allows the BLE112
 to send data regardless of whether anything is connected to the port, which
 prevents the buffer from filling up and potentially locking the module.

 <port> Configures Port 0 pins with pull-down (for later use with GPIO interrupts).

The example is designed to work with the DKBLE112 development kit in the default configuration, so it can be
easily tested with the DKBLE112 and an iPhone running the Nordic Semiconductor nRF Ready app.

<?xml version="1.0" encoding="UTF-8" ?>

<hardware>

 <sleeposc enable="true" ppm="30" />

 <usb enable="false" />

 <txpower power="15" bias="5" />

 <script enable="true" />

 <pmux regulator_pin="7" />

 <usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"

endianness="msb" baud="57600" endpoint="none" />

 <usart channel="1" alternate="1" baud="115200" endpoint="none" flow="false" />

 <port index="0" pull="down" />

</hardware>

https://itunes.apple.com/us/app/nrfready-utility/id497679111

Bluegiga Technologies Oy

Page 13 of 38

4.3 GATT database for Glucose Sensor (gatt.xml)

This section describes how to define the Glucose Profile’s services using Bluegiga’s Profile Toolkit.

The Glucose Profile contains three services:

1. Generic Access Profile (GAP) service

2. Device Information service

3. Glucose service

Optionally, if the application requires it, other services can be implanted, such as the Battery Status service.
This demo project implements the Battery Status service as well.

4.3.1 Generic Access Profile (GAP) service

Every Bluetooth low energy device needs to implement a GAP service. The GAP service is very simple and
consists of only two characteristics. An example implementation of GAP service is show below.

The service has two characteristics, which are explained in Table 4. In this example the characteristics are
read-only, so they are also marked as const. Constant values are stored on the flash of BLE112 and the
value is defined in the GATT database. Constant values cannot be changed.

Figure 4: GAP service

Characteristic UUID Type Support Security Properties

Device name 2A00 UTF8 Mandatory None Read (optionally write)

Appearance 2A01 16-bit Mandatory None Read

Table 4: GAP service description

If the device name needs to be changeable by the remote device, then the write property should be enabled.

<!-- 1800: org.bluetooth.service.generic_access -->

<service uuid="1800" id="generic_access">

 <description>Generic Access</description>

 <!-- 2A00: org.bluetooth.characteristic.gap.device_name -->

 <characteristic uuid="2A00" id="c_device_name">

 <description>Device Name</description>

 <!-- glucose profile v1.0 optional spec: device_name is writable, not enabled here -->

 <properties read="true" const="true" />

 <!-- It's a good idea to keep this <= 19 characters, for proper display on iOS -->

 <value>BGT Glucose Demo</value>

 </characteristic>

 <!-- 2A01: org.bluetooth.characteristic.gap.appearance -->

 <characteristic uuid="2A01" id="c_appearance">

 <description>Appearance</description>

 <properties read="true" const="true" />

 <!-- 1024: Generic Glucose Meter, Generic category -->

 <value type="hex">0400</value>

 </characteristic>

</service>

Bluegiga Technologies Oy

Page 14 of 38

4.3.2 Glucose Service

The sensor is the device implementing the GATT Server, so it must also implement the Glucose service.

The Glucose service is defined as below:

Characteristic UUID Length Type Support Security Properties

Glucose Measurement 2A18
Variable
(max 17B)

Hex Mandatory None Notify

Glucose Measurement Context 2A34
Variable
(max 17B)

Hex Optional None Notify

Glucose Feature 2A51 2 bytes Hex Mandatory None Read

Record Access Control Point 2A52
Variable
(typical 2B)

Hex Mandatory
Writeable with
Authentication

Write, Indicate

Table 5: Glucose Service description

The Glucose Service is created by adding the code below to the gatt.xml file:

Figure 5: Glucose Service (sensor only)

The Glucose service is explained below:

 First, the advertise=”true” option is needed for the for the <service> tag. When the sensor advertises,
the UUID of the glucose service (0x1808) is included in the data field of the advertisement packets, so
the device can be easily identified by the demote devices. Many devices (including iPhones/iPads) often
filter scans based on UUID, so if this is not included in the advertisement packet, your device will not be
seen by the collector.

 Each attribute is given an id field (e.g. “c_glucose_measurement”), which is used in the included
BGScript code for a named reference to the numeric attribute handle. Numeric handles are assigned

<!-- 1808: org.bluetooth.service.glucose -->

<service uuid="1808" advertise="true">

 <description>Glucose Service</description>

 <characteristic uuid="2A18" id="c_glucose_measurement">

 <description>Glucose Measurement</description>

 <properties notify="true" />

 <value length="17" variable="true" />

 </characteristic>

 <characteristic uuid="2A34" id="c_glucose_measurement_context">

 <description>Glucose Measurement Context</description>

 <properties notify="true" />

 <value length="17" variable="true" />

 </characteristic>

 <characteristic uuid="2A51" id="c_glucose_feature">

 <description>Glucose Feature</description>

 <properties read="true" const="true" />

 <value length="2" type="hex">07FF</value>

 </characteristic>

 <characteristic uuid="2A52" id="c_record_access_control_point">

 <description>Record Access Control Point</description>

 <properties indicate="true" write="true" authenticated_write="true" />

 <value length="17" variable="true" />

 </characteristic>

</service>

http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_measurement.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_measurement_context.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_feature.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.record_access_control_point.xml

Bluegiga Technologies Oy

Page 15 of 38

during the compile process based on the structure of the GATT database, so it is helpful to use named
references instead so that you do not need to know the handles beforehand. There is no official naming
convention requirement for these IDs. The only requirement is that they must be alphanumeric (letters,
numbers, and underscore characters only), and they must not overlap with any BGScript keywords.

 Read, write, and notify properties are enabled on the various attributes as required by the service
specification. Using notify means that the collector will be able to “subscribe” (enable notifications) to this
attribute, and then any value updates done by the sensor will be automatically pushed out to the
collector. Indications and notifications are the same except that indications are acknowledged by the
remote end, while notifications are not (similar to the difference between TCP and UDP within the IP
network protocol). Note that on the “c_record_access_control_point” attribute, both write and
authenticated_write are present. This is required; you cannot use simply authenticated_write without
also enabling write.

Bluegiga Technologies Oy

Page 16 of 38

4.3.3 Summary

The full GATT database implementation is shown below. The source code in the demo project has additional
comments which explain the specification requirements and actual values used in much more detail.

Figure 6: Glucose Sensor Profile GATT database

<?xml version="1.0" encoding="UTF-8" ?>

<configuration>

 <service uuid="1800" id="generic_access">

 <description>Generic Access</description>

 <characteristic uuid="2A00" id="c_device_name">

 <description>Device Name</description>

 <properties read="true" const="true" />

 <value>BGT Glucose Demo</value>

 </characteristic>

 <characteristic uuid="2A01" id="c_appearance">

 <description>Appearance</description>

 <properties read="true" const="true" />

 <value type="hex">0400</value>

 </characteristic>

 </service>

 <service uuid="180A" id="device_information">

 <description>Device Information</description>

 <characteristic uuid="2A29" id="c_manufacturer_name">

 <description>Manufacturer Name</description>

 <properties read="true" const="true" />

 <value>Bluegiga</value>

 </characteristic>

 <characteristic uuid="2A24" id="c_model_number">

 <description>Model Number</description>

 <properties read="true" const="true" />

 <value>BG-BLE-GLUCOSE</value>

 </characteristic>

 <characteristic uuid="2A25" id="c_serial_number">

 <description>Serial Number</description>

 <properties read="true" const="true" />

 <value>123456789</value>

 </characteristic>

 <characteristic uuid="2A27" id="c_hardware_revision_string">

 <description>Hardware Revision String</description>

 <properties read="true" const="true" />

 <value>H1.0.0</value>

 </characteristic>

 <characteristic uuid="2A26" id="c_firmware_revision_string">

 <description>Firmware Revision String</description>

 <properties read="true" const="true" />

 <value>F1.0.0</value>

 </characteristic>

 <characteristic uuid="2A28" id="c_software_revision_string">

 <description>Software Revision String</description>

 <properties read="true" const="true" />

 <value>S1.0.0</value>

 </characteristic>

 <characteristic uuid="2A23" id="c_system_id">

 <description>System ID</description>

 <properties read="true" const="true" />

 <value type="hex">112233FFFE778899</value>

 </characteristic>

 </service>

 <service uuid="1808" advertise="true">

 <description>Glucose Service</description>

 <characteristic uuid="2A18" id="c_glucose_measurement">

 <description>Glucose Measurement</description>

 <properties notify="true" />

 <value length="17" variable="true" />

 </characteristic>

 <characteristic uuid="2A34" id="c_glucose_measurement_context">

 <description>Glucose Measurement Context</description>

 <properties notify="true" />

 <value length="17" variable="true" />

 </characteristic>

 <characteristic uuid="2A51" id="c_glucose_feature">

 <description>Glucose Feature</description>

 <properties read="true" const="true" />

 <value length="2" type="hex">07FF</value>

 </characteristic>

 <characteristic uuid="2A52" id="c_record_access_control_point">

 <description>Record Access Control Point</description>

 <properties indicate="true" write="true" authenticated_write="true" />

 <value length="17" variable="true" />

 </characteristic>

 </service>

 <service uuid="180F" id="battery_service">

 <description>Battery Service</description>

 <characteristic uuid="2A19" id="c_battery_level">

 <description>Battery Level</description>

 <properties read="true" notify="true" />

 <value length="1" type="hex" />

 </characteristic>

 </service>

</configuration>

Bluegiga Technologies Oy

Page 17 of 38

4.4 Application Configuration (config.xml)

The config.xml file contains the application configuration for BLE112 device. This file is not mandatory for
your project since all of the default values are typically acceptable, but it is useful for specific requirements
such as script timeout control (as below) or UART optimization settings.

Figure 7: Application configuration for Glucose Sensor

 <script_timeout> Disables script timeout. This generally not advisable without a specific reason,
 but in this implementation, accessing the stored records through the Record
 Access Control Point attribute can take more than the default number of
 allowed script operations to complete, especially if there are a large number of
 stored records. This is therefore used to ensure that all stored records may be
 retrieved without issue. The default value (1000) is enough for only about 10
 records.

The other settings available in config.xml are not necessary for this demo.

<?xml version="1.0" encoding="UTF-8" ?>

<config>

 <script_timeout value="0" />

</config>

Bluegiga Technologies Oy

Page 18 of 38

4.5 BGScript for Glucose Sensor (glucose_sensor.bgs)

The example implements a standalone glucose sensor device where no external host processor is needed.
The Glucose sensor application is created as a BGScript script application and the BGScript code is explained
in this chapter.

BGScript uses an event-based programming approach. The script is executed when an event takes place,
and the programmer may register listeners for various events.

The glucose sensor BGScript application uses the following event listeners:

4.5.1 System: Boot event (system_boot)

When the system is started or reset, a system_boot event is generated. This event listener should be the
entry point for all the BGScript applications, and provides a perfect opportunity for initializing any required
variables.

In the glucose sensor demo, the following tasks take place in the system_boot event handler:

 Initialize status tracking variables and tick counter

 Set up GPIO interrupts for catching button presses

 Enable bonding

 Begin advertising

 Start a 1-second continuous timer

 Load information from public store (PS) keys concerning stored records

 Initialize battery level characteristic to 95% (testing value)

 Output debug boot data to UART

 Initialize DKBLE112 LCD and display status

The actual project source code contains this code along with many detailed comments.

4.5.2 Bluetooth: Connection event (connection_status)

When the Bluetooth connection is established a connection event occurs. For this purpose, an event listener
is added to the BGScript code which tracks the connection status, sends debug data out the UART port, and
updates the LCD appropriately.

Note: because bonding is used, when a collector bonds with the sensor, a second connection_status event
will be fired when the connection becomes ecrypted. If/when this occurs using this demo, the LCD will be
updated again to show “Encrypted” instead of simply “Connected”. Remember that you will not be able to
access stored records using the Record Access Control Point if the connection is not encrypted.

4.5.3 Bluetooth: Disconnection event (connection_disconnected).

If the Bluetooth connection is a lost, a disconnection event occurs. For this purpose, an event listener is added
to the BGScript and it does almost the same as the boot event listener; it sets the application state and
restarts the advertisement procedure.

Note: a Bluetooth Smart device will not automatically resume advertising when a connection is lost. It will be
put into an idle state. If you want the device to resume advertising (typically desirable), you must explicitly do
this.

Bluegiga Technologies Oy

Page 19 of 38

4.5.4 Data: Receiving control data from the remote device (attributes_value)

The ATTribute protocol is used to transmit data over a Bluetooth connection. A remote device can use an ATT
write operation to write up to 20 bytes of data. With the glucose sensor demo, only one attribute is writable,
the “Record Access Control Point.” Therefore, in this project, the attributes_value event will only occur then if
the connection is encrypted (since authenticated write is required for this attribute).

The BGSciprt code checks to make sure the attribute handle matches the c_record_access_control_point
value first (not technically necessary in this case since only one attribute is writable, but very good practice),
and then parses the value written. This attribute is used for sending commands such as “Report stored
records” or “Delete stored records.” The glucose profile describes many possible commands, but for this
demo, only the “Report stored records” command is implemented (opcode value = 0x01).

According to the profile specification, the first byte of the value written to the attribute is the opcode value, and
the second byte is the operator. When the “Report stored records” opcode is used, the operator byte
controls which records should be reported. For this deom, only the “All records” (operator = 0x01), “First
record” (operator = 0x05), and “Last record” (operator = 0x06) are implemented, since these are the only
operations implemented in the nRF demo iOS app.

In this project, records are stored in a ring buffer implemented using the PS key storage space provided right
on the BLE112 module itself. There are 128 key slots available, each holding up to 32 bytes. The first key is
available at address 0x8000, and the last one at 0x807F. The last slot (0x807F) is used for storing the
configuration data and stored record count, leaving 127 more slots. The first record is stored in 0x8000, the
second in 0x8001, and so on. When 0x807E is reached, the next record will be stored on 0x8000. The ring
buffer is maintained using a “head” index variable and a “record count” variable.

Each glucose reading generates a 17-byte measurement value and a corresponding 16-byte measurement
context value. This is a total of 33 bytes, which is too big to fit in a single 32-byte PS key. Therefore, the final
two bytes of the measurement value (which is the “status” subfield of the value) are not stored. In an ideal
implementation, this would not be necessary.

The First/Last/All buttons in the nRF demo app each write a value to this attribute, and the resulting operation
is done inside the attributes_write event handler. This involves reading the requested record(s) from the PS
key storage area, then writing the measurement and measurement context values to the local GATT
attributes, which subsequently pushes them to the connected client using notifications.

For detail on exactly how this is done, refer to the project source code and comments.

4.5.5 IO: Detecting button presses (hardware_io_port_status)

For controlling the behavior of the sensor, this project makes use of two buttons on the DKBLE112 board.

 P0_0 is used to trigger a new glucose reading (using the ADC value read through the potentiometer
also on the DKBLE112).

 P0_1 is used to reset all stored records and bonding information, if present.

Pressing the buttons on the DKBLE112 momentarily brings those lines to a logic HIGH state. These signals
are configured to generate interrupts by the following line back in the system_boot event handler:

call hardware_io_port_config_irq(0, 3, 0)

The first parameter specifies the port, the second is the bitmask for which pins to enable interrupts on, and the
third is the rising or falling edge setting. Interrupts can currently only be enabled on Port 0 and Port 1. The
parameters used in the command above are as follows:

0 = Port 0

3 = 0b00000011, bits 0 and 1 are set, so interrupts enables on Pin 0 and Pin 1 of Port 0

0 = Rising edge

Remember that in hardware.xml, we also configured Port 0 to be pulled down, so that the rising edge will be
more reliably detected. The I/O signals are not de-bounced in this demo.

Bluegiga Technologies Oy

Page 20 of 38

The P0_0 button press initiates an ADC read, which triggered immediately but takes a few milliseconds to
complete. Therefore, the ADC read generates another event (hardware_adc_result) which we also catch.
Although we only use one simultaneous or consecutive ADC read operation in this project, note that multiple
ADC reads must be cascaded such that the second is not triggered until the first completes.

The P0_1 button press manually clears all bonding entry storage slots, sets the stored record count to zero,
and moves the record storage ring buffer head index back to the beginning. It does not actually erase the PS
key values, since this is not necessary.

4.5.6 Timer: 1-second clock tick (hardware_soft_timer)

For basic 1-second “tick” tracking, we enabled the soft timer back in the system_boot event handler with the
following line:

call hardware_set_soft_timer(32768, 0, 0)

The first parameter specifies the interval relative to the main oscillator, which is 32768 Hz. The timer ticks
every (value / 32768) seconds, which in this case is exactly 1 second. The accuracy of this timer is +/-

30ppm, so it is suitable for basic tick tracking of this kind.

The second parameter is the assigned timer handle (should always be “0” in the v1.1 SDK), and the third is
whether it is repeating (0) or single shot (1). We want it to fire every second, so it is configured to be
repeating.

Inside the timer event handler, we mainly do simple animation on the SPI LCD on the DKBLE112 to indicate
activity or revert temporary status messages back to the default “Advertising” or “Connected” or “Encrypted”
message. While advertising, a single “?” character will blink on and off once per second. While connected (or

encrypted), it will alternate between the “+” and “*” characters.

This event handler also triggers a battery level ADC reading, which is used to update the c_battery_status
attribute value when obtained later in the hardware_adc_result handler. The internal battery level ADC
channel is 15.

4.5.7 ADC Result: Battery and Glucose measurement (hardware_adc_result)

This event is triggered when the previously requested ADC read operation completes. We handle two specific
cases in this demo: the battery value, and the potentiometer value used to emulate a glucose concentration
reading. A real glucose sensor would use actual hardware capable of detecting the glucose concentration in a
blood sample. Since this hardware is not available on our dev kit, we use the potentiometer connected to
P0_6 instead.

The battery level is computed from the ADC read range (0-32768) and scaled to the required 0-100 level,
where 0% = 2.0v and 100% = 2.52v (determined empirically with a fresh CR2032). This single byte is written
to the c_battery_level attribute, which is then notified to or read by the collector as desired.

The glucose measurement and context values are more complex, but built one byte at a time in great detail in
the BGScript code according to the glucose service definition. The particular structure of these two values
depends on which features are implemented on the glucose sensor itself. For this demo, we emulate all
available features that are described by the specification.

Bluegiga Technologies Oy

Page 21 of 38

The 17-byte Glucose Measurement attribute is built with the following data:

Byte(s) Field Name Data Type Demo Value Notes

0 Flags 8-bit hex 0x1B

Time Offset field enabled
Glucose Concentration units are kg/L
Type field enabled
Sample location field enabled
Sensor Status field enabled
Context Information enabled
 (sent via Glucose Measurement Context attribute)

1:2 Sequence Number 16-bit hex Variable Starts at 0, increments for each new reading

3:9 Base Time 7-byte hex Variable
3:4=year, 5=month, 6=day,
7=hour, 8=minute, 9=second
0xYYYYMMDDHHmmss

10:11 Time Offset 16-bit hex Variable Seconds to offset from Base Time value

12:13
Glucose Concentration
(kg/L)

16-bit SFLOAT Variable Depends on DKBLE112 potentiometer setting

14 [7-4] Type field 4-bit hex 0x1 0x1 = Capillary Whole Blood

14 [3-0] Sample Location 4-bit hex 0x1 0x1 = Finger

15:16 Sensor Status 16-bit hex 0x0000 0 indicates no error

Table 6: Glucose Measurement Structure

The 17-byte Glucose Measurement Context attribute is built with the following data:

Byte(s) Field Name Data Type Demo Value Notes

0 Flags 8-bit hex 0x5F

Carbohydrate ID enabled
Carbohydrate units are kg

Meal enabled
Tester enabled
Health enabled
Exercise Duration enabled
Exercise Intensity enabled
Medication ID enabled
Medication units are kg

HbA1C precise percentage enabled

1:2 Sequence Number 16-bit hex Variable Must match corresponding measurement

3 Carbohydrate ID 8-bit hex 0x03 0x03 = Dinner

4:5 Carbohydrate (kg) 16-bit SFLOAT 0x13E1
0xE113 = 2.75 kg in SFLOAT format
(0b1110 0001 0001 0011, little endian)

http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16

Bluegiga Technologies Oy

Page 22 of 38

6 Meal 8-bit hex 0x02 0x02 = Postprandial

7 [7:4] Tester 4-bit hex 0x2 0x2 = Health Care Professional

7 [3:0] Health 4-bit hex 0x4 0x4 = Under Stress

8:9 Exercise Duration 16-bit hex 0x1E00 0x001E = 30 seconds (little-endian)

10 Exercise Intensity 8-bit hex 0x64 0x64 = 100% (range = 0-100)

11 Medication ID 8-bit hex 0x02 0x02 = Short acting insulin

12:13 Medication (kg) 16-bit SFLOAT 0x05E0
0xE005 = 0.05 kg in SFLOAT format
(0b1110 0000 0000 0101, little-endian)

14:15 HbA1c (%) 16-bit SFLOAT 0x1DE2
0xE21D = 5.41% in SFLOAT format
(0b1110 0010 0001 1101, little-endian)

Table 7: Glucose Measurement Context Structure

These two attributes are built field-by-field in the hardware_adc_result event handler. All of the field values in
both attributes are static (which they would not be in a real glucose sensor), with the exception of the
sequence number, glucose concentration value, and time offset. The time offset field value is set to whatever
the sequence number is, which gives the effect that each glucose measurement appears to be take one
second after the previous one.

For a detailed look at how this code actually works, refer to the “glucose_sensor.bgs” BGScript source file.

http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16

Bluegiga Technologies Oy

Page 23 of 38

4.6 Compiling and installing the firmware

4.6.1 Using BLE Update tool

When you want to test your project, you need to compile the hardware settings, application configuration,
GATT database, and BGScript code into a binary firmware file. The easiest way to do this is with the BLE
Update tool, which both compiles and flashes the firmware onto a BLE112 module using a CC debugger.

In order to compile and install the project:

1. Connect CC debugger to the PC via USB

2. Connect the CC debugger to the debug interface on the BLE112

3. Press the button on CC debugger and make sure the LED turns green

4. Start the BLE Update tool

5. Make sure the CC debugger is shown in the Port drop down list

6. Use Browse to locate your project.xml file

7. Press Update

BLE Update tool will compile the project and install it into the target device.

Figure 7: Compile and install with BLE Update tool

Bluegiga Technologies Oy

Page 24 of 38

The View Build Log opens up a dialog that shows the bgbuild compilere output and the RAM and Flash
memory allocations.

Figure 8: BLE Update build log

Bluegiga Technologies Oy

Page 25 of 38

4.6.2 Compiling using bgbuild.exe

The project can also be compiled with the bgbuild.exe command line compiler. The BGBuild compiler simply
generates the firmware image file, which can be installed afterwards to the BLE112.

In order to compile the project using BGBuild:

1. Open Windows Command Prompt (cmd.exe)

2. Navigate to the directory where your project is

3. Execute BGbuild.exe compiler

Syntax: bgbuild.exe <project file>

Figure 9: Compiling with BGBuild.exe

If the compilation is successful, a .hex file is generated, which can be installed into a BLE112 module.

On the other hand, if the compilation fails due to syntax errors in the BGScript or GATT files, the BGBuild
utility will display an error message.

Bluegiga Technologies Oy

Page 26 of 38

4.6.3 Installing the firmware with TI’s SmartRF Flash Programmer

The Texas Instruments SmartRF Flash Programmer can also be used to install the firmware into the target
device using the CC debugger.

In order to install the firmware with TI flash tool:

1. Connect CC debugger to the PC via USB

2. Connect the CC debugger to the debug interface on the BLE112

3. Press the button on CC debugger and make sure the LED turns green

4. Start the TI flash Programmer tool

5. Select program CCxxxx SoC or MSP430

6. Make sure the target device is recognized and displayed in the System-on-Chip field

7. Make sure the “Retain IEEE address when programming the chip” field is checked

8. Select the .hex file you want to program to the target device

9. Select Erase, Program and Verify

10. Finally press Perform actions and make sure the installation is successful

Figure 10: TI’s flash programmer tool

Note:

TI Flash tool should NOT be used with the Bluegiga Bluetooth Smart SDK v.1.1 or newer, but BLE Update tool
should be used instead. The BLE112 and BLED112 devices contain a security key which is needed for the
firmware to operate, and if the device is programmed with TI flash tool, this security key will be erased.

http://www.ti.com/tool/flash-programmer

Bluegiga Technologies Oy

Page 27 of 38

5 Testing the Glucose Sensor

5.1 Testing with BLEGUI software

This section describes how to test the Glucose Sensor application with BLEGUI software.

5.1.1 Discovering the Glucose Sensor

As soon as the Glucose Sensor is powered on, it starts to advertise itself. At this point, a BLED112 USB
dongle can be used to detect the glucose sensor using the BLEGUI software.

Preparations:

1. Connect BLED112 USB dongle to a PC

2. Start BLEGUI software

3. Select the correct COM port from the drop down menu and press Attach

4. Execute the Command – Info command to make sure the communication works

Discovering the Glucose Sensor:

1. Set desired scan parameters, check Active Scanning box and press Set Scan Parameters button

2. Select Generic scanning mode and Start scanning

3. If the glucose sensor is powered on, in range, and not connected, it should appear in the main view.

Figure 11: Scanning for the Glucose Sensor

Bluegiga Technologies Oy

Page 28 of 38

5.1.2 Establishing a Bluetooth connection

1. Press the Connect button located next to the device you want to connect to.

a. If the connection is successful, the connect button will change to Disconnect.

b. If the connection fails, an error message will appear in the Log view.

Figure 12: Connected to Glucose Sensor

2. Open the Tools Security Manager dialog and check the “Bondable” option.

Figure 13: Glucose Profile roles

3. Click the “Set Parameters” button in the dialog to enable bonding, then close the dialog.

4. Press the Encrypt button located between the Disconnect button and GATT button. This will bond
the BLED112 with the BLE112 running the glucose sensor project.

a. If encryption is successful, you will see the following entry appear in the Log view:

2013.01.19 22:08:49.0912 ble_rsp_sm_encrypt_start handle: 0 result: 0 ['No Error']

b. If the connection fails, an error message will appear in the Log view.

Bluegiga Technologies Oy

Page 29 of 38

5.1.3 Discovering services

Once you’ve connected to a device, you can use the ATTribute protocol to discover what services it supports.
To discover the services of the glucose sensor:

1. Press the GATT button of the device you’ve just connected in order to start the GATT tool.

2. Press Service Discover button to start a GATT primary service discovery procedure.

Figure 14: GATT service discovery

The four services defined in the gatt.xml should be visible in the GATT tool.

Bluegiga Technologies Oy

Page 30 of 38

5.1.4 Subscribing to Notifications for Glucose Measurement and Context

The Glucose Measurement and Glucose Measurement Context attributes cannot be read directly, but only
push new data out via notifications. Notifications are not enabled by default, and must be enabled explicitly.
Notification settings (and indication settings) are set per-client, and will only persist between disconnections if
a client has been bonded. Otherwise they must be re-enabled after disconnecting.

In order to enable the notifications:

1. Select the Glucose Service (UUID 1808) in the BLEGUI’s GATT view

2. Press Descriptors Discover in order to see all characteristics and descriptors in the glucose service

3. Once the descriptors discovery is complete, select the Client Characteristic Configuration (UUID:
2902) value that relates to the Glucose Measurement (UUID: 2A18) and select it

4. In order to enable notifications for the Glucose Measurement, enter a “1” in the text box below the
GATT table, then click Write to write the value to the Client Characteristics Configuration.

5. Finally, make sure the write operation is executed properly (see Log)

6. Repeat steps 3 & 4 for the Glucose Measurement Context (UUID: 2A34) Client Characteristic
Configuration (UUID 2902) to enable notifications for that attribute as well.

Figure 15: Enabling notifications

Bluegiga Technologies Oy

Page 31 of 38

5.1.5 Testing Glucose Measurements

Now that we have connected, bonded, and enabled notifications, we can test to make sure the measurements
are being taken and sent correctly.

In order to test measurements:

1. Press the P0_0 button on the DKBLE112 (or, if not using the DK, momentarily bring P0_0 HIGH).

2. You should see two new values come in below in the Log view, and:

o One new value will appear in the “Raw” column of the 2A18 attribute (measurement).
Example: 1b0400d9070718101e00040014a7110000

o One new value will appear in the “Raw” column of the 2A34 attribute (context).
Example: 5f04000313e10224001e640205e01de200

3. Verify from Log view that no error is received.

Figure 16: Receiving glucose measurements and context updates

Bluegiga Technologies Oy

Page 32 of 38

5.1.6 Testing the Record Access Control Point with BLEGUI

The Record Access Control Point is used to access any stored measurements on the glucose sensor. After
pressing the P0_0 button a few times to take sample measurements, you can send a “Retrieve All Records”
command to test the record access method. It is difficult to see multiple records come in within the BLEGUI
interface since they are repeatedly notified into the same attribute sequentially, but you can verify in the log
that you receive multiple records.

In order to test record access:

1. Select the Record Access Control Point (UUID 2A52) attribute.

2. Type “0101” in the text box below the GATT table, then click the Write button.

3. You should see a set of notified values appear in the Log window.

4. If you see an error in the Log, verify that your “Bondable” setting is correct within the Tools
Security Manager dialog, and verify that connection is in fact encrypted by clicking the “Encrypt”
button again.

You can test “Retrieve First Record” by using “0105” in step 2, or “Retrieve Last Record” by using “0106”.

Bluegiga Technologies Oy

Page 33 of 38

5.2 Testing with iPhone or iPad

There is an app created by Nordic Semiconductor for Bluetooth Smart enabled iOS devices (iPhone 4S/5,
iPad 3/4/Mini), which can be used to test the glucose sensor.

This section briefly describes how to test the glucose sensor BGScript project using an iPhone.

5.2.1 Getting the App

You can find the app in iTunes here: https://itunes.apple.com/us/app/nrfready-
utility/id497679111

Alternatively, you can open the App Store on your iPhone and search for “nrfready” to
find the app. Note that while the app will run perfectly well on an iPad, you may need to
specifically search for iPhone apps, because it isn’t currently built as a universal
app.

5.2.2 Testing the App

Once you’ve installed the App to your iPhone or iPad, the following steps are required:

1. Power on the glucose sensor (for example DKBLE112)

2. If using the DKBLE112 with built-in peripherals, prepare the board as follows:

o Set POTENTIOMETER switch to ON

o Set ACCELEROMETER switch to OFF

o Set DISPLAY switch to ON

o Set RS232 switch to ON (if using UART debug output from the on-board DB9 port)

o Press the RESET DISPLAY button, then the RESET BLE112 button.

o You should now see “Glucose Demo / Advertising ?” on the LCD:

Figure 17: “Advertising” display on DKBLE112 LCD

3. Start the nRF Utility iPhone application:

https://itunes.apple.com/us/app/nrfready-utility/id497679111
https://itunes.apple.com/us/app/nrfready-utility/id497679111

Bluegiga Technologies Oy

Page 34 of 38

4. Dismiss the disclaimer that appears.

5. Select the “Bluetooth Smart” item from the main welcome screen.

6. Tap the “BGM” icon from the list of services to enter the Blood Glucose Monitor screen.

 Figure 18: nRF Application Startup

7. Tap the gray “gear” icon near the top right corner to enter the Settings screen.

8. Slide the “Wildcard” option to ON.

9. Tap the gray “back arrow” icon near the top left, then click the “CONNECT” button.

 Figure 19: nRF Application Connection

Bluegiga Technologies Oy

Page 35 of 38

10. You should now be connected, but not yet bonded with the BLE112. If you are using the DKBLE112,
the LCD should show the following:

Figure 20: “Connected” display on DKBLE112 LCD

11. If you have not already bonded with the BLE112 running the glucose sensor demo, you should see a
Bluetooth Pairing Request confirmation appear. Click the “Pair” button to bond. The DKBLE112 (if
present) will now show “Encrypted”, like this:

 Figure 21: App Bonding “Encrypted” display on DKBLE112 LCD

Note: if the pairing request does not appear at this point, you may need to do one or more of the
following operations:

o Go to the Bluetooth area of the Settings app on your iPhone and “Forget” the BGT Glucose
Demo device, if present.

o Turn Bluetooth off and then back on again on your iPhone.

o Completely power-cycle your iPhone (not usually required).

o Click the P0_1 button on the DKBLE112 board to reset all settings and erase bonding entries.

o Reflash the glucose sensor project onto your BLE112 (also clears bonding entries).

12. Press the P0_0 button on the DKBLE112 to trigger a glucose reading. The app should show a new
record every time you press the button. You can affect the glucose concentration value by changing
the potentiometer. For a thorough test, make sure you trigger at least a few records.

Bluegiga Technologies Oy

Page 36 of 38

13. Tap the “First” button to retrieve the first stored record. Typically, the sequence number will be 0.

14. Tap the “Last” button to retrieve the last stored record.

15. Tap the “All” button to retrieve all records stored.

 Figure 22: Stored Record Retrieval with nRF App

16. Tap on any record to show the record detail:

Figure 23: Glucose Record Detail View in nRF App

Bluegiga Technologies Oy

Page 37 of 38

6 Appendix

6.1 External resources

 Bluetooth 4.0 software development kit is available at : http://techforum.bluegiga.com

 BLE112 and DKBLE112 hardware documentation is available at : http://techforum.bluegiga.com

 Project files for the Glucose Sensor are in the SDK zip at: http://techforum.bluegiga.com

 Bluetooth SIG’s developer portal: https://developer.Bluetooth.org/

http://techforum.bluegiga.com/
http://techforum.bluegiga.com/
http://techforum.bluegiga.com/
https://developer.bluetooth.org/

Bluegiga Technologies Oy

Page 38 of 38

7 Contact information

Sales: sales@bluegiga.com

Technical support: support@bluegiga.com

http://techforum.bluegiga.com

Orders: orders@bluegiga.com

WWW: www.bluegiga.com

 www.bluegiga.hk

Head Office / Finland:

Phone: +358-9-4355 060

Fax: +358-9-4355 0660

Sinikalliontie 5A

02630 ESPOO

FINLAND

Postal address / Finland:

P.O. BOX 120

02631 ESPOO

FINLAND

Sales Office / USA:

Phone: +1 770 291 2181

Fax: +1 770 291 2183

Bluegiga Technologies, Inc.

3235 Satellite Boulevard, Building 400, Suite 300

Duluth, GA, 30096, USA

Sales Office / Hong-Kong:

Phone: +852 3182 7321

Fax: +852 3972 5777

Bluegiga Technologies, Inc.

19/F Silver Fortune Plaza, 1 Wellington Street,

Central Hong Kong

mailto:sales@bluegiga.com
mailto:support@bluegiga.com
http://techforum.bluegiga.com/
mailto:orders@bluegiga.com
http://www.bluegiga.com/
http://www.bluegiga.hk/

