

Bluetooth® low energy technology

Bluegiga Technologies

Topics

- Background
- What is Bluetooth low energy?
- Basic concepts
- Architecture
- Differentiation and comparison
- Markets and applications

Background

Background

2001:

First ideas from Nokia: BTLite

2006:

 Nokia, Suunto, Nordic Semiconductor etc. form Wibree Forum to further develop the technology

June 2007:

- Bluetooth SIG together with Nokia agreed that the Wibree Forum is merged with the Bluetooth SIG
- Wibree addresses devices with very low battery capacity and as it could be easily integrated with *Bluetooth* technology, it will round out *Bluetooth* technology's wireless Personal Area Networking (PAN) offering

Background

December 2009:

First version of the core specification was released

July 2010:

First version of the host specification was released

March 2011:

First Bluetooth LE profiles adopted

2011:

First Bluetooth low energy devices appear on the market

Bluetooth low energy is a NEW, open, short range radio technology

- Blank sheet of paper design
- Different to Bluetooth classic (BR/EDR)
- Optimized for ultra low power
- Enables coin cell battery use cases
 - < 20mA peak current
 - < 5uA average current

However...

- Must reuse as much Bluetooth RF as possible
 - Same antenna and RF components
 - Can time division multiplex with Bluetooth
- Must reuse Bluetooth HCI
 - Same physical host interfaces: UART, USB and SDIO
 - Same HCI packet format
 - Same HCI OS drivers
- Must reuse Bluetooth L2CAP
 - A known packet multiplexing point

Has same benefits as Bluetooth classic:

- Robust
- Interoperable
- Global
- Royalty free
- Small size
- Secure
- Connectivity to mobile phones and PCs

Except:

- Lower power
- Lower cost

Everything is optimized for lowest power consumption

- Short packets reduce TX peak current
- Short packets reduce RX time
- Less RF channels to improve discovery and connection times
- Simple state machines
- Single protocol
- Etc.

Why?

- Coin cell batteries will be the main source of power
 - < 20mA peak current
 - < 5uA average current

Memory is expensive

- Memory requires silicon area, which costs money
- Memory increases leakage current and reduces battery life

So minimize memory requirements

- Short packets require less buffering
- Simple protocol requires less states
- Simple services require less memory

Peripherals are simple and resource constrained

Optimize peripherals

Central devices have more resources and power

- Not so critical to optimize
- e.g. mobile phones and PCs

Design for success

- Ability to discover thousands of devices
- Unlimited number of slaves connected to a master
- State of the art encryption
- Security including authentication, authorization and privacy
- Robustness and data integrity

Architecture

Layered architecture

Profiles

Application specific data

GAP

Device discovery, connections

GATT

Organization of data

ATT

Data access protocol

L2CAP

Multiplexer

HCI

Interface between host and controller

Link layer

Packets and radio control

Physical layer

Transmission/reception of bits

Device modes

Dual mode

- Implements Bluetooth BR/EDR and Bluetooth low energy
- Can be used everywhere, where *Bluetooth* is used today

Single mode

- Implements only Bluetooth low energy
- Will be used in new devices / applications

Device modes

Physical layer

2.4 GHz transciever

- Industrial Scientific Medical (ISM) band
- 2400 MHz to 2483,5 MHz
- License free

GFSK modulation

- Modulation index 0.5
- -> Improvide SNR and therefore better range

Bandwidth

1 Mbps

40 channels

- 2 MHz channel spacing
- 2402 MHz to 2480 MHz

Physical layer

Minimum transmit power

• 0.01mW (-20 dBm)

Maximum transmit power (regultaroty limit)

• 10mW (+10 dBm)

Minimum receiver sensitivity

• -70 dBm (Bit Error Rate 0.1%)

Range

- 0dBm TX power and -70dBm RX sensitivity
- ~ 30 meters
- 10dBm TX power and -90dBm RX sensitivity
- 100+ meters

Typically devices have:

- 0-4 dBm TX-.power
- -85 to -90 dBm sensitivity

Physical layer

Link layer

A simple state machine

Channels

Advertising and data channels

Packets

Advertising and data packets

Link layer procedures

- Advertising
- Scanning
- Initiating connections
- Connected

Topologies

- Point-to-point
- Star

Link layer security

Link layer state machine

Link layer channels

3 advertising channels

- Used for discoverability and connectability
- Used for broadcasting
- Avoid known 802.11 frequencies

37 data channels

- Used to reliably send application data in a connection
- Use Adaptive Frequency Hopping for co-existence and robustness

Link layer

Link layer

Link layer packets

Single packet format

- Preamble used to synchronize AGC
- Access address identifies advertising PDUs or device pairs
- PDU contains application data
- 24-bit CRC protects agains errors
 - Better than Bluetooth BT/EDR

Link layer packets

Advertising PDUs

- Used to find devices, get additional information or open connections
- 7 PDU types

Data PDU

Carries application data reliably

Device address

Public Device Address

Link layer: Passive scanning

18/11/11

Advertising

Advertising data

- "I'm connectable and bondable"
- "My trasmit power is 0 dBm"
- "I support heart rate, manufacturer and battery services"

Why advertise?

- Takes around 1.5 ms of time
- 20 x lower power then *Bluetooth* classic

Link layer: Active scanning

18/11/11

Active scanning

Active scanning used to get more data from the advertiser

Scan response data

- Device name is "Indoor thermostat"
- Device supports thermometer and battery services

Link layer: Connection

18/11/11

Connections

• Master always transmits at known "anchor points"

Known as connection interval Starts a connection event From 7.5ms to 4.0s

Slave is able to listen / communicate

Slave latency allows slave to save power if it has nothing to send Slave can skip N anchor points

Automatically extends when

More data bit set by either device

Automatically ends when CRC errors received

Move to another channel at next connection event

Link layer: Topologies

Link layer: Topologies

Link layer: Topologies

Topology limits

A single master can address ~2³¹ slaves

~ 2 billion addressable slaves per master

Max Connection Interval = 4.0 seconds

- Can address a slave every ~ 5 ms (assuming 250 ppm clocks)
- ~ 800 active slaves per master

Note:

Devices RAM may limit the number of connections

Link layer security

AES-128 is the encryption engine of choice

Used by most other secure wireless standards

Link Layer uses CCM (Counter Mode CBC-MAC) (RFC 3610)

- Encryption and Authentication of Data
- MIC added to end of payload to authenticate data
- Authentication does not have to be done in real-time
 >Saves power

Limits:

- 13.5 Terabytes / connection
- ~12 years at maximum data rate

Host Controller Interface

Transport layer

- UART
- USB
- SDIO
- 3 wire UART

Functional layer

- HCI commands
- HCI events
- Data

New commands added for Bluetooth LE

L2CAP

Logical Link Control and Adaptation Protocol

Acts as a protocol multiplexer

Segmentation and reassmebly of packets

All application data is sent using L2CAP

Three fixed channels for Bluetooth LE

- Attribute protocol
- LE L2CAP signalling protocol
- Security Manager protocol

Security Manager

Used for pairing and key distribution

Use distributing key model

- Slave generates and distributes key information to master
- Master can use this key information when reconnecting

Pairing

- Authentication based on their capabilities / security requirements
- Side effect is encrypted link / key distribution

Signing Data

Signing allows authentication of sender without encryption

Uses several keys

- Short term key
- Long term key
- Identity resolving key

Bonding

GAP concept – device save keys for bonded devices

Security Manager

Attribute Protocol (ATT)

Attribute Protocol (ATT)

The only protocol used in *Bluetooth* low energy

Uses client server architecture

- servers store data
- clients request data from server
- clients writes data to server

Protocol Methods

- Client to server: Read, write
- Server to client: Notify, indicate

The data is exposed as attributes

- Attributes have values
- 0 to 512 octets
- Fixed or variable length

Attributes have handles

Used to address individual attributes

Read 0x0022 -> 0x04

Handle	Value
0x0009	0x54656d70657261747572652053656e736f72
0x0022	0x04
0x0098	0x0802

18/11/11

Attributes have a type

- Identified by UUIDs
- UUIDs are 16-bit (Bluetooth SIG assigned) or 128-bit (manufacturer proprietary)

Types are defined is specifications

- Characteristics specifications
- Generic Access Profile
- Generic Attribute Profile

Handle	Туре	Value
0x0009	«Device Name»	0x54656d70657261747572652053656e736f72
0x0022	«Battery State»	0x04
0x0098	«Temperature»	0x0802

0x54656d70657261747572652053656e736f72 = "Temperature Sensor"

Attributes have permissions:

- Readable / not readable
- Writeable / not writeable
- Readable & writeable / not readable & not writeable

Attribute values may require:

- Authentication to read / write
- Authorization to read / write
- Encryption / pairing to read / write

These are defined in *Bluetooth* LE profile specifications

Attribute Protocol is stateless

Transactions:

- Request -> Response
- Command
- Notification
- Indication -> Confirmation

Attribute Protocol is sequential

Only one request at a time

Simple!

Attribute operations: notify
 Server sends the data when it changes

Attribute operations: indicate

Server sends the data when it changes
Client confirms that is has received the data

Attribute operations: read

Client requests data when it needs it

Client polls server for attribute value

- This may be inefficient if data doesn't change often
- Shouldn't be used for frequently changing data that you are monitoring

Attribute operations: write

Client can set attributes to configure a server

E.g. set the room temperature to 22°C

Generic Attribute Profile

GATT defines concepts of

- Service group
- Characteristic group
- Declarations
- Descriptors

Same client server architecture as in ATT, except:

- Data is encapsulated in services
- Data is exposed in characteristics

GATT: Generic Attribute Profile

Attribute Protocol is just a flat structure

Profiles require hierarchical structures

GATT defines how to group attributes

Groups of attributes in a "Service"

Groups of attributes within a "Service" – Sub-Services

Groups of attributes by client

A service is:

- A collection of characteristics
- References to other services

Primary Service

 A primary service is a service that exposes primary usable functionality of this device. A primary service can be included by another service

Secondary Service

 A secondary service is a service that is subservient to another secondary service or primary service. A secondary service is only relevant in the context of another service.

Attributes are flat

Handle	Туре	Value	Permissions
0x0001	«Primary Service»	«GAP»	R
0x0002	«Characteristic»	{r, 0x0003, «Device Name»}	R
0x0003	«Device Name»	"Temperature Sensor"	R
0x0004	«Characteristic»	{r, 0x0006, «Appearance»}	R
0x0006	«Appearance»	«Thermometer»	R
0x000F	«Primary Service»	«GATT»	R
0x0010	«Characteristic»	{r, 0x0012, «Attribute Opcodes Supported»}	R
0x0012	«Attribute Opcodes Supported»	0x00003FDF	R
0x0020	«Primary Service»	«Temperature»	R
0x0021	«Characteristic»	{r, 0x0022, «Temperature Celsius»}	R
0x0022	«Temperature Celsius»	0x0802	R*

Grouping gives structure

Handle	Туре	Value	Permissions	
0x0001	«Primary Service»	«GAP»		
0x0002	«Characteristic»	{r, 0x0003, «Device Name»}	R	
0x0003	«Device Name»	"Temperature Sensor"	R	
0x0004	«Characteristic»	{r, 0x0006, «Appearance»}	R	
0x0006	«Appearance»	«Thermometer»	R	
0x000F	«Primary Service»	«GATT»	R	
0x0010	«Characteristic»	{r, 0x0012, «Attribute Opcodes Supported»}	R	
0x0012	«Attribute Opcodes Supported»	0x00003FDF	R	
0x0020	«Primary Service»	«Temperature»	R	
0x0021	«Characteristic»	{r, 0x0022, «Temperature Celsius»}	R	
0x0022	«Temperature Celsius»	0x0802	R*	

GAP: Generic Access Profile

Defines Profile Roles

Broadcaster, Observer, Peripheral, Central

Defines Modes

Discoverable General discoverable, non-

discoverable, limited discoverable

Connectable Connectable, non-connectable

Bondable Bondable, non-bondable

Privacy

Non-Resolvable and Resolvable Private Addresses

Differentation & Comparison

Differentiation

- Simple star topology reduces implementation complexity significantly
- Very small silicon footprint and thereby very low cost
- Very robust through frequency hopping compared to other wireless technologies
- Very secure through 128 bit AES encryption
- Very low power always OFF technology
- No competitors (Bluetooth is already in phones)

Comparison

	Technology	Classic <i>Bluetooth</i> technology (BR/EDR) ¹	<i>Bluetooth</i> low energy technology ²	ZigBee
	Radio Frequency	2.4 GHz	2.4 GHz	2.4 GHz
	Distance / Range	10 to 100 meters ³	10 to 100 meters ³	10 to 200 meters ⁴
	Over the air Data Rate	1-3Mbps	1Mbps	250kbps at 2.4 GHz.
	Application Throughput	0.7-2.1 Mbps	0.2 Mbps	<0.1 Mbps
	Nodes/Active Slaves	7 / 16777184 ⁵	Unlimited ⁶	65535 ⁷
	Security	64b/128b and applications layer user defined	128b AES and application layer user defined	128b AES and application layer user defined
	Robustness	Adaptive fast frequency hopping, FEC, fast ACK	Adaptive fast frequency hopping	DSSS, Uses only 16 ch. in ISM band, optional mesh topology has long recovery time
	Latency (from a non connected state)			
	Total time to send data (det.battery life) ⁸	100ms	<3ms	<10ms
	Government Regulation	Worldwide	Worldwide	Worldwide
	Certification Body	Bluetooth SIG	Bluetooth SIG	ZigBee Alliance
	Voice capable	Yes	No	No
	Network topology	Scatternet	Star-bus	Star or Mesh
	Power Consumption	1 as the reference	0.01 to 0.5(depending on use-case)	2 (router) / 0.1 (end point)
	Peak current consumption (max 15 mA to run on coin cell battery)	<30 mA	<15 mA	<15 mA
	Service discovery	Yes	Yes	No
	Profile concept	Yes	Yes	Yes
	Primary Use Cases	Mobile phones, gaming, headsets, stereo audio streaming, automotive, PCs, consumer electronics, etc.	Mobile phones, gaming, PCs, watches, sports & fitness, healthcare, automotive, consumer electronics, automation, industrial, etc.	Fixed location industrial, building & home automation, AMI/SmartEnergy

Markets

Health

Home

Office

Automotive

Watch

MAKE YOUR SELECTION

Sports & fitness

- Heart rate
- Cadence
- Watches
- Pedometers

Assisted living

Sensors

Temperature Humidity Alarms

Collectors

Collect information from sensors
Display information to user

Consumer medical

Weight scales

Blood pressure meters

Blood glucose meters

Entertainment

Remote controllers

Gaming controllers

Automation

Industrial automation

Robots

Motors

Processes

Home automation

Temperature Humidity Lights

Security

- Key fobs
- Proximity monitors
- Electrical keys
- Mobile phone keys

Broadcast advertising

- Information points
- Indoor GPS
- Advertisements
- Maps of facilities
- Fire exits

Summary

Summary

Bluetooth low energy is a new technology

- Blank sheet of paper
- Optimized for low power

Bluetooth low energy is designed to be low power

- 10-20 times less power consumption compared to *Bluetooth* classic
- Low silicon area and memory requirements
- Enables coin cell battery use cases

Bluetooth low energy is designed for new applications

- Health
- Fitness
- Automation
- Security
- Watch

Summary

Bluetooth low energy is designed to be secure and robust

- AES-128 with CBC/MAC
- Simple pairing
- Privacy support
- Adaptive Frequency Hopping
- Reliable connections

It's still Bluetooth!

- Reuse of RF, HCI and L2CAP
- Royalty free
- Developed and driven by Bluetooth SIG (~14000 members)
- Bluetooth already in mobile phones and PCs
- Qualification and interoperability
- ~3 billion sold devices already

