HITACHI

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.

FOR MESSRS: DATE: Mar. 10th 2010

CUSTOMER'S ACCEPTANCE SPECIFICATION

TX06D126VM0AAA

Contents

No.	ITEM	SHEET No.	PAGE
1	COVER	7B64PS 2701-TX06D126VM0AAA-1	1-1/1
2	RECORD OF REVISION	7B64PS 2702-TX06D126VM0AAA-1	2-1/1
3	GENERAL DATA	7B64PS 2703-TX06D126VM0AAA-1	3-1/1
4	ABSOLUTE MAXIMUM RATINGS	7B64PS 2704-TX06D126VM0AAA-1	4-1/1
5	ELECTRICAL CHARACTERISTICS	7B64PS 2705-TX06D126VM0AAA-1	5-1/1
6	OPTICAL CHARACTERISTICS	7B64PS 2706-TX06D126VM0AAA-1	6-1/2~2/2
7	BLOCK DIAGRAME	7B64PS 2707-TX06D126VM0AAA-1	7-1/1
8	RELIABILITY TESTS	7B64PS 2708-TX06D126VM0AAA-1	8-1/1
9	LCD INTERFACE	7B64PS 2709-TX06D126VM0AAA-1	9-1/7~7/7
10	OUTLINE DIMENSIONS	7B64PS 2710-TX06D126VM0AAA-1	10-1/1
11	APPEARANCE STANDARD	7B64PS 2711-TX06D126VM0AAA-1	11-1/3~3/3
12	PRECAUTIONS	7B64PS 2712-TX06D126VM0AAA-1	12-1/3~3/3
13	DESIGNATION OF LOT MARK	7B64PS 2713-TX06D126VM0AAA-1	13-1/1

ACCEPTED BY:	PROPOSED BY:	Kenthen
--------------	--------------	---------

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2701- TX06D126VM0AAA-1	PAGE	1-1/1	
--	--------------	-------------------------------	------	-------	--

2	RECOF	SDOF	RF\/IS	ION
_ .	$I \setminus L \setminus J \setminus J \mid$	\mathbf{V}	$I \setminus L \setminus V \setminus L$	$I \setminus J \mid V$

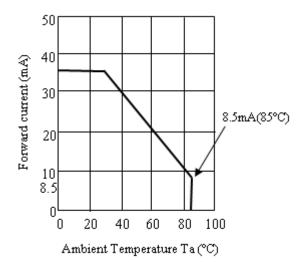
DATE	SHEET No.	SUMMARY

KAOHSIUNG HITACHI	
ELECTRONICS CO., LTD	

3. GENERAL DATA

3.1 DISPLAY FEATURES

This module is a 2.4" QVGA of 4:3 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display.


Part Name	TX06D126VM0AAA
Module Dimensions	41.92(W) mm x 61.45(H) mm x 2.55 (D) mm typ.
LCD Active Area	36.72(W) mm x48.96(H) mm
Pixel Pitch	0.153 (W) mm x 0.153 (H) mm
Resolution	240 x 3(RGB)(W) x 320(H) dots
Color Pixel Arrangement	R, G, B Vertical stripe
LCD Type	Transmissive Color TFT; Normally black
Display Type	Active Matrix
Number of Colors	65.5K Colors (8 bit, 16 bit CPU interface) 262k Colors (9 bit, 18 bit CPU interface)
Backlight	3 LEDs series (20mA)
Weight	13g
LCD Driver	R61505W Renesas SP driver
Interface	8-bit / 9-bit / 16-bit / 18-bit CPU bus (80 series)
Power Supply Voltage	Logic and analog voltage VDD = Vcc = Vci = 2.8 ± 0.08 V Interface voltage 1.75V \leq I/O Vcc \leq VDD
Viewing Direction	Super wide version (In-Plane Switching)

4. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Remarks
Logic & Analog Voltage	VDD=Vcc=Vci	-0.3	4.6	V	-
Interface Voltage	I/O Vcc	-0.3	4.6	V	-
Input Voltage	Vi	-0.3	I/OVcc+0.3	V	Note 1
Operating Temperature	Тор	-20	70	°C	Note 2
Storage Temperature	Tst	-30	80	°C	-
LED Reverse Voltage	VR	-	5	V	-
LED Forward Current	IF	-	35	mA	Note 3

- Note 1: The rating is defined for the input voltages such as RESET*, RD*, WR*, CS*, RS, Vsync*, IM0, IM3 and DB17~0 data bus.
- Note 2: The maximum rating is defined as above based on the temperature on the panel surface, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
 - Background color, contrast and response time would be different in temperatures other than 25°C.
 - Operating under high temperature will shorten LED lifetime.

Note 3: The derating curve of forward current is shown as below.

5. ELECTRICAL CHARACTERISTICS

 $T_a = 25 \, ^{\circ}C, \, \text{VSS} = 0\text{V}$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Logic&Analog Voltage	VDD	-	2.72	2.8	2.88	V	Note 1
Interface Voltage	I/OVcc	-	1.75	-	VDD	V	-
Input Voltage	\/I	"H" level	0.9xI/OVcc	-	I/OVcc	V	
(RESET pin only)	VI	"L" level	0	-	0.1xl/OVcc	V	-
Input Voltage	\ /:	"H" level	0.8xI/OVcc	-	I/OVcc	V	Note 0
(Except RESET pin)	Vi	"L" level	0	-	0.2xI/OVcc	V	Note 2
Output Valtage	1/0	"H" level	0.8xI/OVcc	-	-	V	Note 2
Output Voltage	Vo	"L" level	-	-	0.2xI/OVcc	V	Note 3
Leak Current (In/ouput)	ILi	-	-1.0	-	1.0	μΑ	
		All White	-	4.0	7.5	mA	Note 4
Power Supply Current	Icc	Partial	-	1.0	4.0	mA	Note 5
		DSTB	-	0.1	1.0	μΑ	Note 6
LED Forward Voltage	VLED	Each LED	2.8	3.2	3.5	V	-
LED Forward Current	ILED	Each LED	-	20	35	mA	-
Frame Frequency	fFLM	-	75	85	(95)	Hz	-

Note 1: $VDD \ge I/OVcc$.


Note 2: The rating is defined for the input voltages such as RD*, WR*, CS*, RS, Vsync*, IM0, IM3 and DB17~0 data bus.

Note 3: The rating is defined for FMARK and DB17~0.

Note 4: An all white check pattern is used when measuring Icc under the condition VDD=I/OVcc=2.8V, fFLM=85 Hz.

Note 5: A partial pattern as below is displayed when measuring lcc.

40 Lines: White 280 Lines: Black fFLM = 85 Hz 8-color mode

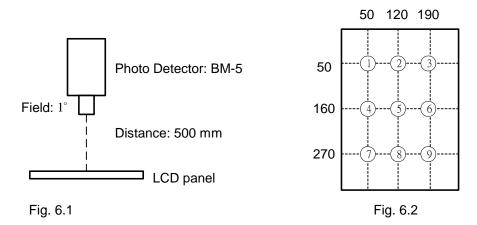
Note 6: Under deep standby mode to measure lcc.

6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25°C.
- In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in Fig 6.1.

 $T_a = 25 \, ^{\circ}C$, 9.4.2 sequence, VDD=I/OVcc=2.8V

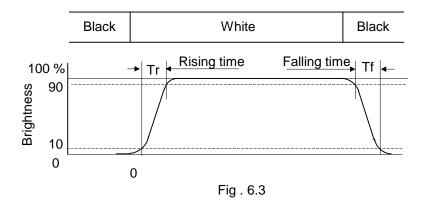

T	1 _a - 25 °C, 5.4.2 Sequence, VDD-1/C VOC-2.5V								
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks	
Brightness of	of White	-	1 0° 0 0°	170	250	-	cd/m ²	Note 1	
Brightness U	niformity	-	$\phi = 0^{\circ}, \theta = 0^{\circ},$ ILED= 20 mA	70	80	-	%	Note 2	
Contrast F	Ratio	CR	ILED= 20 MA	200	400	-	-	Note 3	
Response (Rising + Fa		$T_r + T_f$	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	40	70	ms	Note 4	
) /i a social as A	Viewing Angle		$\phi = 0^{\circ}, CR \ge 10$	-	160	-	D	Note 5	
Viewing A			$\phi = 90^{\circ}$, CR ≥ 10	1	160	-	Degree		
	Dod	X		0.60	0.65	0.70			
	Red	Υ		0.28	0.33	0.38			
	Croon	X		0.28	0.33	0.38			
Color	Green	Υ		0.58	0.63	0.68			
Chromaticity	Blue	X	$\phi = 0^{\circ}, \theta = 0^{\circ}$	0.10	0.15	0.20	-	Note 6	
	Diue	Y		0.04	0.09	0.14			
	\\/bito	Х		0.24	0.29	0.34			
	White	Y		0.27	0.32	0.37			

Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value.

Note 2: The brightness uniformity is calculated by the equation as below:

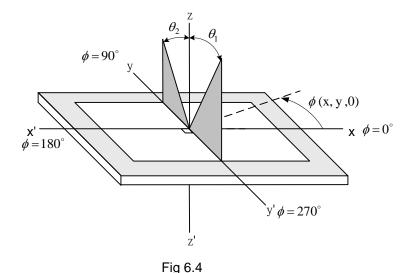
$$Brightness\ uniformity = \frac{Min.\ Brightness}{Max.\ Brightness} \times 100\%$$

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.

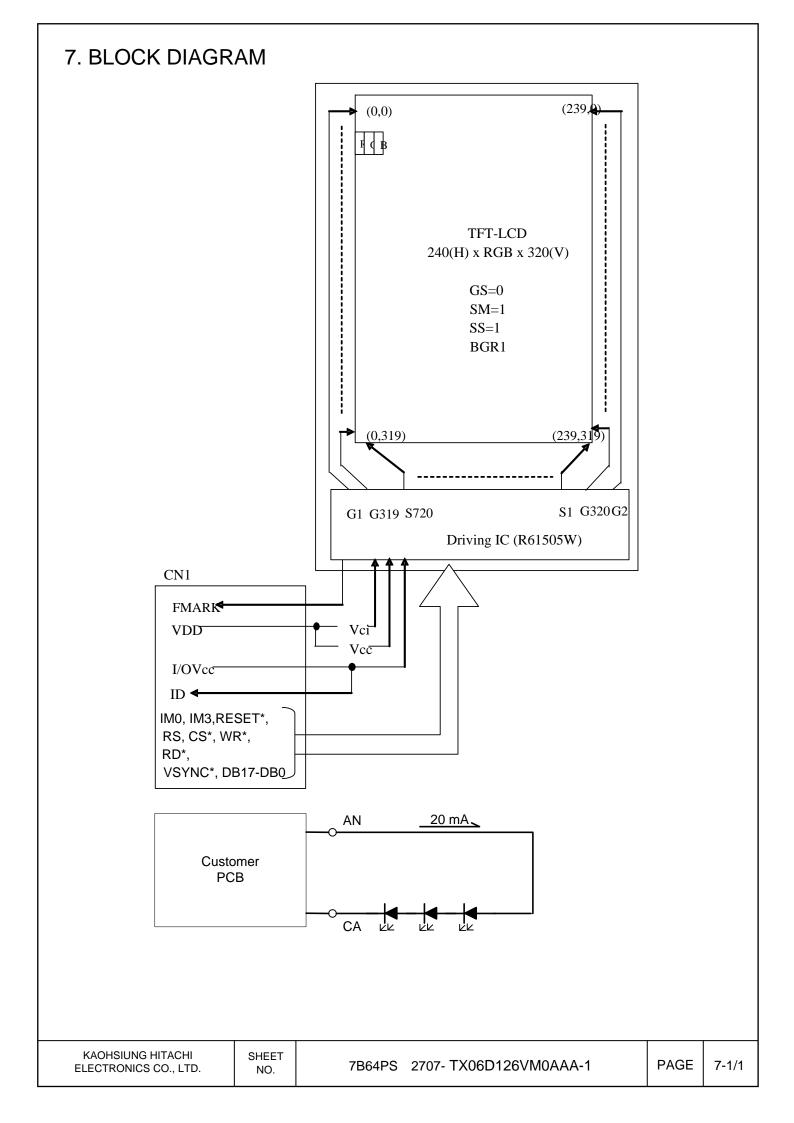


KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS	2706- TX06D126VM0AAA-1		PAGE	6-1/2	
--	--------------	--------	------------------------	--	------	-------	--

Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation:


$$CR = \frac{Brightness\ of\ White}{Brightness\ of\ Black}$$

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from10% brightness to 90% brightness when the data is from white to black. Oppositely, Falling time is the period from 90% brightness rising to 10% brightness.



Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY.

The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction.

Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

8. RELIABILITY TESTS

Test Item	Condition	
High Temperature	1) Operating 2) 80 °C	240 hrs
Low Temperature	1) Operating 2) -30 °C	240 hrs
High Temperature	1) Storage 2) 80 °C	240 hrs
Low Temperature	1) Storage 2) -30 °C	240 hrs
Thermal Shock	1) Non-Operating 2) -40 °C ↔ 85 °C 3) 0.5 hr ↔ 0.5 hr	240 hrs
High Temperature & Humidity	1) Operating 2) 60 °C & 90%RH 3) Without condensation	240 hrs
High Temperature & Humidity	1) Storage 2) 60 °C & 90%RH 3) Without condensation	240 hrs

Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests.

Note 2: The display is not guaranteed for use in corrosive gas environments.

9. LCD INTERFACE

9.1 INTERFACE PIN CONNECTIONS

The display interface connector (CN1) is FH26-39S-0.3SHW(5) (Hirose). Pin assignment is as below:

Pin No.	Symbol	Power I/O	Signal			
1	GND	Power	Ground			
2	GND	Power	Ground			
3	ID	0	ID (=I/OVcc)			
4	IMO	I	MPU Interface Switching			
5	IM3	I	MPU Interface Switching			
6	RESET*	I	Reset			
7	DB17	I/O	Data Bus (Instruction & Display Data)			
8	DB16	I/O	Data Bus (Instruction & Display Data)			
9	DB15	I/O	Data Bus (Instruction & Display Data)			
10	DB14	I/O	Data Bus (Instruction & Display Data)			
11	DB13	I/O	Data Bus (Instruction & Display Data)			
12	DB12	I/O	Data Bus (Instruction & Display Data)			
13	DB11	I/O	Data Bus (Instruction & Display Data)			
14	DB10	I/O	Data Bus (Instruction & Display Data)			
15	DB9	I/O	Data Bus (Instruction & Display Data)			
16	DB8	I/O	Data Bus (Instruction & Display Data)			
17	DB7	I/O	Data Bus (Instruction & Display Data)			
18	DB6	I/O	Data Bus (Instruction & Display Data)			
19	DB5	I/O	Data Bus (Instruction & Display Data)			
20	DB4	I/O	Data Bus (Instruction & Display Data)			
21	DB3	I/O	Data Bus (Instruction & Display Data)			
22	DB2	I/O	Data Bus (Instruction & Display Data)			
23	DB1	I/O	Data Bus (Instruction & Display Data)			
24	DB0	I/O	Data Bus (Instruction & Display Data)			
25	RD*	I	Read			
26	WR*	I	Write			
27	RS	I	Data / Command Identification			
28	CS*	I	Chip Select			
29	I/OVcc	Power	Power Supply for Interface			
30	I/OVcc	Power	Power Supply for Interface			
31	VDD	Power	Power Supply for Logic and Analog			
32	VDD	Power	Power Supply for Logic and Analog			
33	NC	-	Non Connect			
34	AN	Power	Power Supply for LED			
35	CA	Power	Ground for LED			
36	VSYNC*	I	Line Synchronous Signal			
37	FMARK	0	Frame Head Pulse Signal			
38	NC	-	Open or Ground (Hitachi test only)			
39	GND	Power	Ground			

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2709- TX06D126VM0AAA-1	PAGE	9-1/7	
--	--------------	-------------------------------	------	-------	--

9.2 CPU INTERFACE MODE

9.2.1 CPU interface mode selection

		80-System Bus Interface						
Pin No.	Signal	18- bit 262K colors	16- bit 65K colors	9- bit 262K colors	8- bit 65K colors			
4	IMO	GND	GND	I/O Vcc	I/O Vcc			
5	IM3	I/O Vcc	GND	I/O Vcc	GND			

9.2.2 The map of unused data bus

Bus In	terface	18-bit	16-bit	9-bit	8-bit
Valid D	ata bus	DB17-0	DB17-10, DB8-1	DB17-9	DB17-10
Input \	/oltage	I/O Vcc	GND	I/O Vcc	GND
Pin No.	Signal	MAP			
7	DB17				
8	DB16				
9	DB15				
10	DB14				
11	DB13				
12	DB12				
13	DB11				
14	DB10				
15	DB9		GND or I/O Vcc		GND or I/O Vcc
16	DB8			GND or I/O Vcc	GND or I/O Vcc
17	DB7			GND or I/O Vcc	GND or I/O Vcc
18	DB6			GND or I/O Vcc	GND or I/O Vcc
19	DB5			GND or I/O Vcc	GND or I/O Vcc
20	DB4			GND or I/O Vcc	GND or I/O Vcc
21	DB3			GND or I/O Vcc	GND or I/O Vcc
22	DB2			GND or I/O Vcc	GND or I/O Vcc
23	DB1			GND or I/O Vcc	GND or I/O Vcc
24	DB0		GND or I/O Vcc	GND or I/O Vcc	GND or I/O Vcc

9.2.3 Data format of CPU interface

																			- 1
D	ata Bus									DI	8								
Do	ala Dus	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
18bit	Transfer 1	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
16bit	Transfer 1	R5 =R0	R4	R3	R2	R1	G5	G4	G3	*	G2	G1	G0	B5 =B0	B4	ВЗ	B2	B1	*
OP:4	Transfer1	R5	R4	R3	R2	R1	R0	G3	G2	G1					*				
9bit	Transfer 2	G2	G1	G0	B5	B4	ВЗ	B2	B1	В0					*				
0 h : 4	Transfer 1	R5 =R0	R4	R3	R2	R1	G3	G2	G1					>	ķ				
8bit	Transfer 2	G2	G1	G0	B5 =B0	B4	ВЗ	B2	B1		•		•	>	k		•		

Note1: Unused pins of DB marked "*", please connect to GND or I/O Vcc.

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2709- TX06D126VM0AAA-1	PAGE	9-2/7	
--	--------------	-------------------------------	------	-------	--

9.3 INTERFACE TIMING

9.3.1 18-bit / 16-bit timing of 80 series bus interface

I/O Vcc = 1.75 to Vcc

Item		Symbol	Min.	Тур.	Max.	Unit
Due evale time	Write	tCYCW	79	-	1	ns
Bus cycle time	Read	tCYCR	630	-	1	ns
Write low-le	vel pulse width	PWLW	42	-	1	ns
Read low-le	vel pulse width	PWLR	420	-	-	ns
Write high-le	evel pulse width	PWHW	27	-	-	ns
Read high-le	Read high-level pulse width		210	-	-	ns
Rise & falling	time (Read & Write)	tWRr, tWRf	-	-	23	ns
Set up time	Write (RS to CS*, WR*)	tAS	0	-	-	ns
Set up time	Read (RS to CS*, RD*)	tAS	11	-	-	ns
Address	s hold time	tAH	3	-	-	ns
Write data	a set up time	tDSW	27	-	-	ns
Write data hold time		tH	11	-	-	ns
Read data delay time		tDDR	-	-	315	ns
Read da	ta hold time	tDHR	4	-	-	ns

9.3.2 9-bit / 8-bit timing of 80 series bus interface

I/O Vcc = 1.75 to Vcc

I	tem	Symbol	Min.	Тур.	Max.	Unit
Due suele time	Write	tCYCW	74	-	-	ns
Bus cycle time	Read	tCYCR	630	-	1	ns
Write low-le	vel pulse width	PWLW	32	-	1	ns
Read low-le	vel pulse width	PWLR	420	-	ı	ns
Write high-le	evel pulse width	PWHW	27	-	1	ns
Read high-level pulse width		PWHR	210	-	1	ns
Rise & falling	time (Read & Write)	tWRr, tWRf	1	-	23	ns
Cot un timo	Write (RS to CS*, WR*)	tAS	0	-	1	ns
Set up time	Read (RS to CS*, RD*)	tAS	11	-	1	ns
Address	s hold time	tAH	3	-	1	ns
Write data	a set up time	tDSW	27	-	-	ns
Write data hold time		tH	11	-	-	ns
Read data delay time		tDDR	-	-	315	ns
Read da	ta hold time	tDHR	4	-	-	ns

9.3.3 Reset timing

Item	Symbol	Min.	Тур.	Max.	Unit
Reset wait time	tRW	1	-	-	ms
Reset low-level width	tRES	1	-	-	ms
Reset rise time	trRES	-	-	9	ms

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2709- TX06D126VM0AAA-1	PAGE	9-3/7	
--	--------------	-------------------------------	------	-------	--

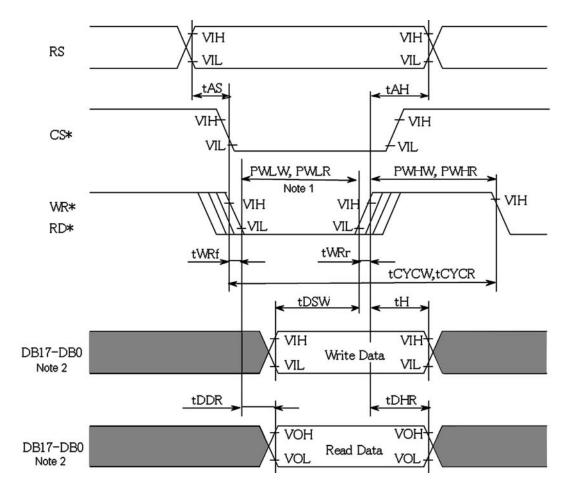


Fig. 9.1 Timing of data bus

Note 1: The period of PWLW and PWLR should be kept after CS* under low-level condition. For read and write data functionalities, please refer to the relationship of DB set up & hold time and WR* & RD* low-level pulse width.

Note 2: Unused DB [17:0] pins shall be fixed to "loVcc or GND".

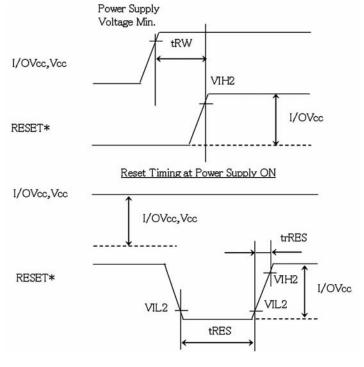
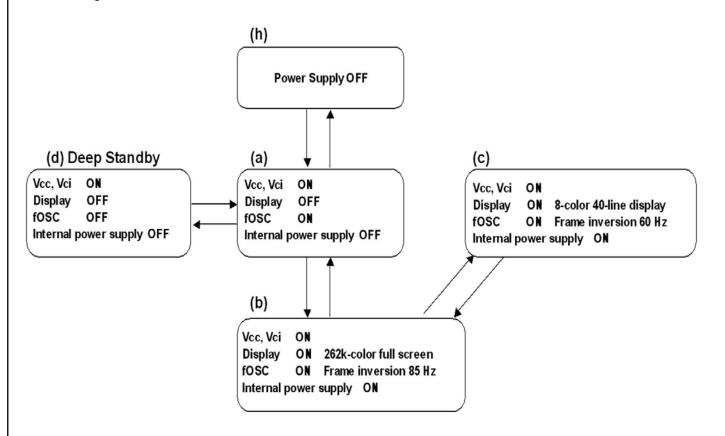
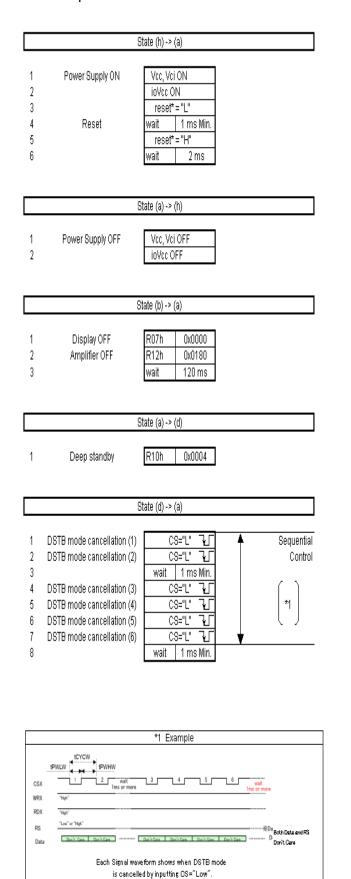



Fig. 9.2 Timing of Reset


KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2709- TX06D126VM0AAA-1	PAGE	9-4/7
--	--------------	-------------------------------	------	-------

9.4 REGISTER SETTING FLOW

9.4.1 Stage chart

9.4.2 Sequence

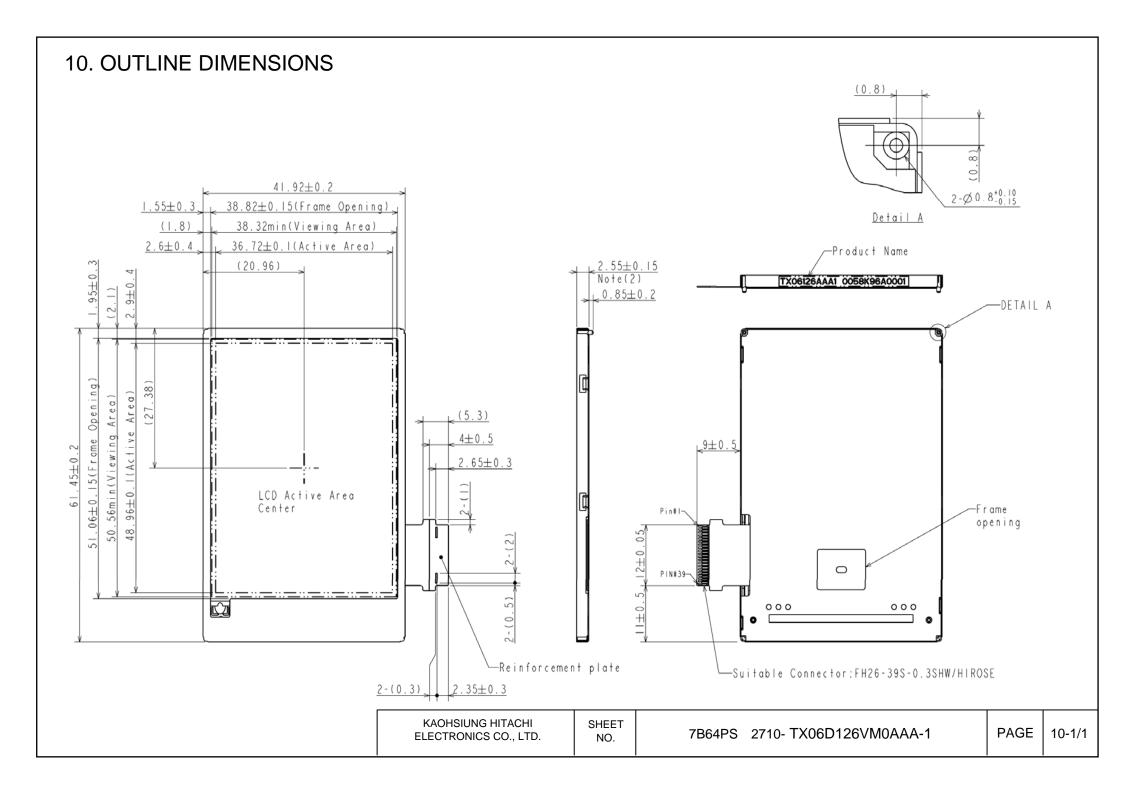
1	Oscillation (600k Hz) set	RA4h	0x0001	
2		wait	1 ms	
3	Gate scan control	R60h	0x2700	
4	Display control	R08h	0x0808	
5	Gamma setting	R30h	0x0204	
6		R31h	0x880E	
7		R32h	0x0B06	
8		R33h	0x0507	
9		R34h	0x3211	
10		R35h	0x0704	
11		R36h	0x860B	
12		R37h	0x0E08	
13		R38h	0x0502	
14	TIM OF U	R39h	0x1132	
15	fFLM=85 Hz	R90h	0x0015	
16		R10h	0x0530	
17	Danier and the start	R11h	0x0237	
18	Power supply start	R12h	0x01BC	
19		wait	100 ms	
20	Diamento de control	R13h	0x0F00	
21	Driver output control	R01h	0x0500	
22	LCD drive AC control	R02h	0x0000	
23	Entry mode	R03h	0x1030	
24	ISC control	R09h	0x0001	
25	FMARK	R0Ah	0x0008	
26	External display interface	R0Ch	0x0000	
27	Frame marker control	R0Dh	0x0000	
28		R0Eh	0x0000	
29	H RAM address S	R50h	0x0000	
30	H RAM address E	R51h	0x00EF	
31	V RAM address S	R52h	0x0000	
32	V RAM address E	R53h	0x013F	
33	First screen display control	R61h	0x0000	
34	Base image display control	R6Ah	0x0000	
35 ac	Oaks automit was the control	R91h	0x0001	
36 27	Gate output position control	R92h	0x0100	
37 20	Source output position control	R93h	0x0001	
38 20	GRAM address set	R20h	0x0000	
39 40	OD#M#-	R21h	0x0000	
40	GRAM write	R22h	loto unito	Image cite: 040:000
41	Diopley ON	Display o		lmage size: 240x320
42	Display ON	R07h	0x0100	I
41	lmage refresh	R20h	0x0000	
42		R21h	0x0000	
43		R22h	-	
44		Display o	lata write	

State (a) -> (b)

State (b) -> (c) 0x0000 Display OFF R07h 2 wait 25ms 2 frames Min. 3 H RAM address S R50h 0x0000 R51h 4 H RAM address E 0x00EF 5 R52h V RAM address S 0x0000 6 V RAM address E R53h 0x0027 0x0000 Partial 1 display position R80h Partial 1 RAM address S 0x0000 8 R81h 9 Partial 1 RAM address E 0x0027 R82h 10 PTS on R09h 0x0401 11 Frame frequency control R90h 0x001E fFLM=60 Hz 12 R11h 0x0457 13 wait 35ms 2 frames Min. 14 GRAM address R20h 0x0000 15 R21h 0x0000 16 GRAM write R22h 17 Display data write Image size: 240x40 18 8-color mode display ON R07h 0x1008 19 Image refresh R20h 0x0000 20 R21h 0x0000 21 R22h

OL 1 7 5 7 7 8					
					-
	ĸ١	w /	 100	tata	0

Display data write


Image size: 240x40

22

1	Display OFF	R07h	0x0000	
2		wait	35ms	2 frames Min.
3	PTS off	R09h	0x0001	
4	H RAM address S	R50h	0x0000	
5	H RAM address E	R51h	0x00EF	
6	V RAM address S	R52h	0x0000	
7	V RAM address E	R53h	0x013F	
8	Partial 1 display position	R80h	0x0000	
9	Partial 1 RAM address S	R81h	0x0000	
10	Partial 1 RAM address E	R82h	0x0000	
11	Frame frequency control	R90h	0x0015	fFLM=85 Hz
12		R11h	0x0237	
13		wait	25ms	2 frames Min.
14	GRAM address	R20h	0x0000	
15		R21h	0x0000	
16	GRAM write	R22h	-	
17		Display o	lata write	lmage size: 240x320
18	Display ON	R07h	0x0100	
19	lmage refresh	R20h	0x0000	
20		R21h	0x0000	
21		R22h	-	
22		Display o	lata write	Image size: 240x320
		= := (-:-) =		

State i	ľh۱۰	Refresh
olale i	WJ.	Reliesii

1	Gate scan control	R60h	0x2700
2	Display control	R08h	0x0808
3	Gamma setting	R30h	0x0204
4		R31h	0x880E
5		R32h	0x0B06
6		R33h	0x0507
7		R34h	0x3211
8		R35h	0x0704
9		R36h	0x860B
10		R37h	0x0E08
11		R38h	0x0502
12		R39h	0x1132
13	fFLM=60 Hz	R90h	0x0015
14		R10h	0x0530
15		R11h	0x0237
16	Power supply start	R12h	0x01BC
17		R13h	0x0F00
18	Driver output control	R01h	0x0500
19	LCD drive AC control	R02h	0x0000
20	Entry mode	R03h	0x1030
21	ISC control	R09h	0x0001
22	FMARK	R0Ah	0x0008
23	External display interface	ROCh	0x0000
24	Frame marker control	RODh	0x0000
25		R0Eh	0x0000
26	H RAM address S	R50h	0x0000
27	H RAM address E	R51h	0x00EF
28	V RAM address S	R52h	0x0000
29	V RAM address E	R53h	0x013F
30	First screen display control	R61h	0x0000
31	Base image display control	R6Ah	0x0000
32	- ' '	R91h	0x0001
33	Gate output position control	R92h	0x0100
34	Source output position control	R93h	0x0001
35	GRAM address set	R20h	0x0000
36	GRAM write	R21h	0x0000
37	GRAM write	R22h	
38		Display d	ata write
39	Display ON	R07h	0x0100

11. APPEARANCE STANDARD

(1) Ambient illumination for the inspection with LCD and backlight ON : 300~500[lx]

Ambient illumination for the inspection with LCD and backlight OFF : 1000~1500[lx]

(2) Inspection distance(viewing distance to LCD module) : Approximately 30 cm

(3) Viewing angle : $\leq 30^{\circ}$

- (4) Refer to the Measurement Conditions described in Item 6.1 for all other conditions.
- The distance between inspector's eyes and display is 30 cm.
- The viewing zone is defined with angle θ shown in Fig. 11.1 The inspection should be performed within 30° when display is shut down. The inspection should be performed within 5° when display is power on.

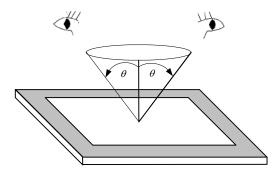
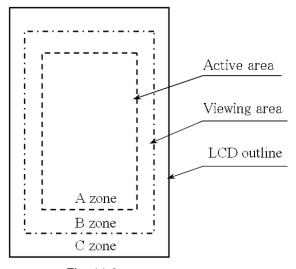
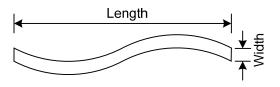
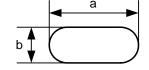


Fig. 11.1

11.1 THE DEFINITION OF LCD ZONE

LCD panel is divided into 3 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the viewing area as defined in section 10 except active area; C zone is the LCD outline including FPC and plastic frame but active and viewing area.


Fig. 11.2

11.2 LCD APPEARANCE SPECIFICATION

The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.3 and Fig. 11.4.

Item		Applied zone					
	Length (mm)	Wi	idth (mm)	Maximum nu	ımber	Minimum space	
	Ignored	V	V≦0.02	Ignored	t	-	
Scratches	L≦40	0.02	<w≦0.04< td=""><td>10</td><td></td><td>-</td><td>A, B</td></w≦0.04<>	10		-	A, B
	L≦20	V	V≦0.04	10		-	
Dent			Serious one	is not allowed			Α
Wrinkles in polarizer			Serious one	is not allowed			Α
	Average diar	neter	(mm)	Max	kimum r	number	
Bubbles on polarizor	D≦0).15			A D		
Bubbles on polarizer	0.15<	0.2	2		2		A,B
	0.2<	0<0.3					
		0.2 < D<0.3 1 Filamentous (Line shape)					
	Length (mm)		Widtl	h (mm)	Max	imum number	
	L≦2.0		W≦	<u>≤</u> 0.01		Ignored	A, B
	L≦2.0		0.01 <	W≦0.05		2	
	L≦2.5		0.0	5 <w< td=""><td></td><td>1</td><td></td></w<>		1	
1) Stains							
2) Foreign Materials	Average diameter ((mm)	Maximu	m number	Mir	imum Space	
3) Dark Spot	D<0.1		Ign	ored		-	
	0.1≦D<0.2			2		10 mm	A D
	0.2≦D			0		30 mm	A, B
	Those wiped out easily are acceptable						
			T	ype	Max	imum number	
			1	dot		1	
	Bright dot-defed	ct	2 adjacent	dot or above	Ν	lot allowed	
Dot-Defect			In	total		1	Α
(Note 1)			1	dot		2	^
	Dark dot-defec	:t	2 adjacent	dot or above		1	
			In	total		3	
		ln t	total			4	

Average diameter = $\frac{a+b}{2}$

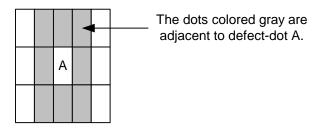

Fig. 11.3

Fig. 11.4

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2711- TX06D126VM0AAA-1	PAGE	11-2/3	
--	--------------	-------------------------------	------	--------	--

Note 1: The definitions of dot defect are as below:

- The defect area of the dot must be bigger than half of a dot.
- For bright dot-defect, showing black pattern, the dot's brightness must be over 30% brighter than others.
- For dark dot-defect, showing white pattern, the dot's brightness must be under 70% darker than others.
- The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot.
- The definition of adjacent dot is shown as Fig. 11.5.

12. PRECAUTIONS

12.1 GENERAL ATTENTION

- 1) The LCD module covered by this specification has been designed specifically for a mobile phone application. Customer should always comply with this specification when using this LCD module not only for a mobile phone but also for other application. We do not recommend customer to use it for other applications. Deviations from this specification will void any warranty stated or implied, including quality and safety sections. Furthermore, this module has not been explicitly developed for medical equipment critically related to human life such as life support apparatus.
- 2) Never attempt to disassemble this LCD module. There is danger such as a burn, an electric shock, and an injury. Moreover, when module is disassembled, we do not guarantee these specifications including quality and safety.

12.2 PRECAUTIONS of ESD

- 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling.
- 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD.

12.3 PRECAUTIONS of HANDLING

- 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by using sharp tools harder than 3H, especially touch panel, metal frame and polarizer.
- 2) Please do not stack the displays as this may damage the surface. In order to avoid any injuries, please avoid touching the edge of the glass or metal frame and wore gloves during handling.
- 3) Touching the polarizer or terminal pins with bare hand should be avoided to prevent staining and poor electrical contact.
- 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces.
- 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer.
- 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanent damages.
- 7) Maximum pressure to the surface of the display must be less than $^{1,96 \times 10^4}$ Pa. If the area of applied pressure is less than $^{1\,cm^2}$, the maximum pressure must be less than 1.96N.
- 8) Do not subject the LCD module to a humid environment for any extended period. If the ambient storage temperature is over 35°C, steps should be taken to avoid high humidity. The polarizer can deteriorate under high temperatures and high humidity. Additionally, this can also cause the polarizer to bubble and peel. Please store/operate the LCD module within the specified temperatures and humidity ranges.
- 9) Condensation on the LCD module may cause staining, dirtying or damage to the polarizer. If it is necessary to move the display from an area of lower ambient temperature to a higher one, it is required to let them normalize to the new ambient temperature before unpacking or use.

- 10) As the display is made of glass, it is possible to break under shock loads, especially the periphery can be easily cracked or chipped in handling. Please handle the module with care and prevent it from being dropped.
- 11) Never bend nor scratch the interface part. These actions can cause poor electrical contact.
- 12) Since the top and bottom areas of bent FPC tend to be easily damaged, be very careful not to push or hold in those areas.
- 13) Be careful not to apply local stress to the back of the LCD module. This will potentially cause scratching to the backlight guide, or result in a non-uniformity issue. Pay extra attention to the interface connector portion at the time of connector insertion.

12.4 PRECAUTIONS OF OPERATING

- 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance.
- 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C . In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature.
- 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking.
- 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than \pm 100 mV.
- 5) Be aware of the possibility of condensation under a sudden temperature change. Formation of dewdrops can cause damage to polarizer or electrical contacts and result inferior displaying or malfunction. And even after the condensation has dispersed, smears or spots may occur on the display surface.
- 6) As the LCD module provides a high frequency circuit, sufficient countermeasures against electromagnetic noise, such as shielding, may be required.
- 7) Do not connect nor disconnect the module to or from main system with power applied.
- 8) Provide light shielding so that the driver is not exposed to light. Exposure to strong light may cause malfunction of the driver.

12.5 PRECAUTIONS of STORAGE

If the displays are going to be stored for years, please be aware the following notices.

- 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light.
- 2) The recommended long term storage temperature is between 10 °C ~30 °C and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses.
- 3) It would be better to keep the displays in the container, which is shipped from Hitachi, and do not unpack it.
- 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer.

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2712- TX06D126VM0AAA-1	PAGE	12-2/3
--	--------------	-------------------------------	------	--------

12.6 SAFETY

This LCD module is a glass product. In case of damage, ensure operators wear a pair of protective gloves whilst handling it. Additionally, if any liquid (liquid crystal) accidentally comes into contact with skin, immediately wash it off with soap and water.

12.7 MECHANICAL DESIGN

The design of the mobile phone case for this LCD module should be well studied so that any shock will not be transferred to the LCD module. When the mobile phone is dropped and the case provides insufficient shock absorption, the LCD module may become damaged.

12.8 ENVIRONMENTAL PROTECTION

- 1) Abide by national laws, legislation and local regulation when disposing of this LCD module.
- 2) This LCD module complies with RoHS Directive.

13. DESIGNATION of LOT MARK

The lot mark is showing in Fig.13.1. Please refer to Fig. 13.2 and Fig. 13.3 for the detail defination.

TX06126AAA1 0001K9C10001

Fig. 13.1

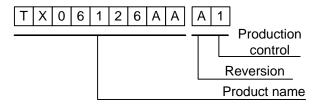


Fig. 13.2

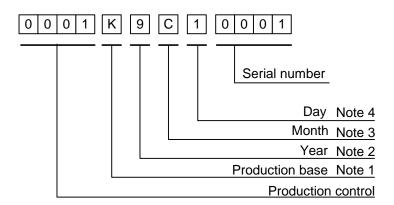


Fig. 13.3

Note 1:

Production base	Symbol			
Hitachi Displays	Н			
Hitachi Display	s			
Device (Suzhou)	5			
Wistron Optronics	к			
(Kunshan) Corp.	K			

Note 2:

Year	Symbol
2009	9
2010	0
2011	1

Note 3:

Month	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
Symbol	1	2	3	4	5	6	7	8	9	Α	В	С

Note 4:

• •													
Day	1	2	3	4	5	6	7	8	9	10	11	12	13
Symbol	1	2	3	4	5	6	7	8	9	Α	В	С	D
Day	14	15	16	17	18	19	20	21	22	23	24	25	26
Symbol	Е	F	G	Н	J	K	L	М	N	Р	Q	R	S
Day	27	28	29	30	31								
Symbol	Т	U	V	W	Х								

KAOHSIUNG HITACHI ELECTRONICS CO., LTD.	SHEET NO.	7B64PS 2713- TX06D126VM0AAA-1	PAGE	13-1/1
--	--------------	-------------------------------	------	--------